
I August 1988 A F CAI/PY UILU-ENG-88-2249
(V) ACT-99

m COORDINATED SCIENCE LABORATORY
a) College of Ehgineering

- Applied Computation Theory

INSTRUCTION
SETS FOR
PARALLEL
RANDOM
ACCESS
MACHINES

i
Jerry Lee Trahan IC

AfELECTE
i S EP 2 3 1988

IH
I

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

li s8 92 02o3

UNCLASSIFIED
SECURITY CLASSIFICATION O THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTPiCTIVi MARKINGS

Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABIUTY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-88-2249 (ACr-99)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7.. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (f 4APk&W*)
University of Illinois N/A Office of Naval Research

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1101 W. Springfield Ave. 800 N. Quincy St.
Urbana, IL 61801 Arlington, VA 22217

Ba. NAME OF FUNDINGISPONSORING Igb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Joint Services i applicabie) N00014-84-C-0149

Electronics Program

Sc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

800 N. Quincy St. PROGRAM PROJECT ITASK WORK UNIT

Arlington, VA 22217 INO. . ACCESSION NO.

I1. TITLE (Include Secunty Classfication) E

Instruction Sets for Parallel Random Access Machines

12. PERSONAL AUTHOR(S)
Trahan, Jerry Lee

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, D Sy) 5. PAGE COUNT
Technical I FROM _ TO August, 1988 169

16 SUPPLEMENTARY NOTATION

17. COSATi CODES I&. SUBJECT TERMS (Continue an reverse if nece ary ard identify by block number)
FIELD GROUP SUB-GROUP parallel random access machine, parallel computation,

computational complexity, instruction set, multiplication,
division, shift

19. ABSTRACT (Conitinue on reverse if necessary and identfy by biock nmnber)

In this report, we compare the computational power of time bounded Parallel Random Access

Machines (PRAMs) with different instruction sets. A basic PRAM can perform the following opera-

tions in unit-time: addition, subtraction, Boolean operations, comparisons, and indirect addressing.

Multiple processors may concurrently read and concurrently write a single cell. Let PRAM[op]

denote the class of PRAMs with the basic instruction set augmented with the set op of instructions.

Let T amd I denote unrestricted left and right shift, respectively.

kover
20. DISTRIBUTION J AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

(MUNCLASSIFIEDULINUMITED 03 SAME AS RPT. C3 OTIC USERS I Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473, 64MAR 83 APR edition may b used unti exhusted. SECURITY CLASSIRCATION OF THIS PAGE
All other editions are obsolete.

iTwrLASSIFIED

UNCLASSIFIED

19. ABSTRACT tcontinued)

We prove that polynomial time on a PRAM[)] or on a PRA-M[,+] or on a PRAM[t,]] is

equivalent to polynomial space on a Turing machine (PSPACE). This extends the result that polyno-

mial time on a basic PRAM is equivalent to PSPACE (Fortune and Wyllie, 1978) to hold when the

PRAM is allowed unit-time multiplication or division or unrestricted shifts. It also extends to the

PRAM the results that polynomial time on a random access machine (RAM) with multiplication is

equivalent to PSPACE (Hartmanis and Simon, 1974) and that polynomial time on a RAM with snifts

(that is, a vector machine) is equivalent to PSPACE (Pratt and Stockmever, 1976; Simon. 1977).

This report establishes that the class of languages accepted in polynomial time on a

PRAM[*,t,I'] contains the class of languages accepted in exponential time on a nondeterministic Tur-

ing machine (NEXPTIME) and is contained in the class of languages accepted in exponential space

on a Turing machine. This result is notable because if, as has been conjectured, NEXPTIME prop-

erly contains PSPACE, then a PRAM[,T,] is more powerful, to within a polynomial factor in time,

than a PRAM with one of the other instruction sets.

We present efficient simulations of PRAMs with enhanced instruction sets by sequential RAMs

with the same instruction sets. This report presents simulations of probabilistic PRAMs by deter-

ministic PRAMs, using parallelism to replace randomness. We also give simulations ot PRAM[op]s

by PRAMs, where both the simulated machine and the simulating machine are exclusive read,

exclusive write machines.

Accession For

NTIS _JRA&I W4

DTIC TAB
Unannouxiced 0.
Just if icntin OVAor0

By
Distribution/

Availability Codes j
Avail ard/o I

Et.S('tal

UNCLASSIFIED

INSTRUCTION SETS FOR PARALLEL RANDOM ACCESS MACHINES

BY

JERRY LEE TRAHAN

B.S., Louisiana State University and A. & M. College, 1983
M.S., University of Illinois, 1986

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1988

I Urbana, Illinois

i
I
I

!
I

AbstractI
In this thesis, we compare the computational power of time bounded Parallel Random

Access Machines (PRAMs) with different instruction sets. A basic PRAM can perform the

following operations in unit-time: addition, subtraction, Boolean operations, comparisons,

and indirect addressing. Multiple processors may concurrently read and concurrently write a

single cell. Let PRAM[op] denote the class of PRAMs with the basic instruction set

augmented with the set op of instructions. Let T and I denote unrestricted left and right

shift, respectively.

We prove that polynomial time on a PRAM[*] or on a PRAM[*,-] or on a PRAM[IJ]

is equivalent to polynomial space on a Turing machine (PSPACE). This extends the result

that polynomial time on a basic PRAM is equivalent to PSPACE (Fortune and Wyllie, 1978)

to hold when the PRAM is allowed unit-time multiplication or division or unrestricted shifts.

It also extends to the PRAM the results that polynomial time on a random access machine

(RAM) with multiplication is equivalent to PSPACE (Hartmanis and Simon, 1974) and that

polynomial time on a RAM with shifts (that is, a vector machine) is equivalent to PSPACE

(Pratt and Stockmeyer, 1976; Simon, 1977).

This thesis establishes that the class of languages accepted in polynomial time on a

PRAM[*,TI] contains the class of languages accepted in exponential time on a

nondeterministic Turing machine (NEXPTIME) and is contained in the class of languages

accepted in exponential space on a Turing machine. This result is notable because if, as has

been conjectured, NEXPTIME properly contains PSPACE, then a PRAM[*,T,lI] is more

powerful, to within a polynomial factor in time, than a PRAM with one of the other

instruction sets.

iv

We present efficient simulations of PRAMs with enhanced instruction sets by

sequential RAMs with the same instruction sets. This thesis presents simulations of

probabilistic PRAMs by deterministic PRAMs, using parallelism to replace randomness. We

also give simulations of PRAM[op]s by PRAMs, where both the simulated machine and the

simulating machine are exclusive read, exclusive write machines.

IF

I

I

V

Acknowledgments

I would like to express my great appreciation to Professor Michael Loui for his patient

and skillful teaching and his encouragement. I would like to thank Professor Vijaya

Ramachandran for her valuable insights and suggestions.

I wish to thank my wifemfor her support, patience, and confidence. I also want

to thank my parents for their constant support throughout my education.

This research was supported by the Joint Services Electronics Program (U. S. Army, U.

S. Navy, U. S. Air Force) under Contract N00014-84-C-0149.

JI

JI

II

i |i

Table of Contents
i• I

Chapter Page

1. Introduction .. I

2. Literature Review.. 6

3. Definitions and Two Key Lemm as ... 17

4. M ultiplication .. 27

5. Division... ... 39

6. Shift .. 45

7. M ultiplication and Shift .. 71

8. Probabilistic Choice ... 91

9. Sim ulation by Sequential M achines .. 103

10. Alternatives .. 131

11. Sum m ary and Open Problem s .. 143

Appendix A : Procedure BOOL ... 146

Appendix B: Procedure AD D (PRA M) ... 148

Appendix C: Procedure COM PARE .. 150

Appendix D : Procedure SYM BOL, Boolean Case .. 152

Appendix E: Procedure AD D (TM) ... 154

References .. 158

Vita ... 163

~a

vii

List of Figures

" I
I Figure Page

f 3.1. Memory allocation: T(n)=3, P(n)=4 .. 24

6.1. Encoding tree for E(01100) .. 47

6.2. Shared memories of Z ... 52

7.1. Portions of Lmasko and Lmask 1 80

9.1. Circuit tree example .. 106

9.2. Gate name in C, .. 122

9.3. Gate name in BCn .. 125

~I

~I

~I

~i

I

Chapter 1. Introduction

An important model of parallel computation is the Parallel Random Access Machine

(PRAM), which comprises multiple processors that execute instructions synchronously and

share a common memory. Formalized by Fortune and Wyllie (1978) and Goldschlager

(1982), the PRAM is a much more natural model of parallel computation than older models

such as combinational circuits and alternating Turing machines (Ruzzo, 1981) because the

PRAM abstracts the salient features of a modem multiprocessor computer. Eventually an

algorithm developed for the PRAM can be implemented on a parallel network computer such

as a mesh-connected array computer (Thompson and Kung, 1977), a hypercube machine

(Seitz, 1985), a cube-connected cycles machine (Preparata and Vuillemin, 1981), or a

bounded degree processor network (Alt et al., 1987); on all network computers the routing of

data complicates the implementation of algorithms.

A number of shared memory machines have been built, such as the Cedar (Kuck, 1986),

Cray X-MP (Chen, 1983), NYU Ultracomputer (Schwartz, 1980; Gottlieb et al., 1983), and

RP3 (Pfister et al., 1985).

The PRAM provides the foundation for the design of highly parallel algorithms (Luby,

1986; Miller and Reif, 1985; among many others). This model permits the exposure of the

intrinsic parallelism in a computational problem because it simplifies the communication of

data through a shared memory.

jBecause of the widespread use of the PRAM model, further advances in research on

parallel computation demand a thorough understanding of its capabilities. In particular, we

study the effect of the instruction set on the performance of the PRAM.

2

To quantify differences in computational performance, we determine the time

complexities of simulations between PRAMs with different instruction sets. We focus on the

computational complexity of simulations between PRAMs with the following operations:

multiplication
division
arbitrary left shift
arbitrary right shift
probabilistic choice

We prove that polynomial time on PRAMs with unit-time multiplication and division or

on PRAMs with unit-time ur restricted shifts is equivalent to polynomial space on Turing

machines (TMs). Consequently, PRAMs with unit-time multiplication and division and

PRAMs with unit-time unrestricted shifts are at most polynomially faster than the standard

PRAMs, which do not have these powerful instructions. These results are surprising for two

reasons. First, for a sequential random access machine (RAM), adding unit-time

multiplication (*) or unit-time unrestricted left shift (1) seems to increase its power:

RAM-PTIME = PTIME 'Cook and Reckhow, 1973),
RAM(* I-PTIME = PSPACE (Hartmanis and Simon, 1974),
RAM [T]-PTIME = PSPACE (Simon, 1977),

whereas adding one of these operations to a PRAM does not increase its power by more than

a polynomial in time. Second, despite the potential speed offered by massive parallelism, a

sequential RAM with unit-cost multiplication or unrestricted shifts is just as powerful, within

a polynomial amount of time, as a PRAM with the same additional operation.

The basic PRAM has unit-cost addition, subtraction, Boolean operations, comparisons,

and indirect addressing. Let PRAM[op] denote the class of PRAMs with the basic

instruction set augmented with the set op of instructions. Let PRAM [op]-TIME (T(n))

denote the class of languages ;ecognized by PRAM[opls in time 0 (T(n)) on inputs of length

n, PRAM [op]-PTIME the union of PRAM [op]-TIME (T(n)) overall polynomials T(n),

and PRAM [op]-POLYLOGTIME the union of PRAM [op]-TIME (T (n)) over all T (n) that

are polynomials in log n.

We establish the following new facts about PRAMs. Recall that PSPACE =

PRAM -PTIME (Fortune and Wyllie, 1978).

PSPACE = PRAM [*]-PTIME (1

= PRAM [*, +]-PTIME

= PRAM [+]-PTIME

= PRAM [T,J]-PTIME

PRAM -POLYLOGTIME = PRAM [*]-POLYLOGTIME (2)

= PRAM [*, -+]-POLYLOGTIME

= PRAM [---J-POLYLOGTIME

= PRAM [t,,]-POLYLOGTIME

AiEXPTIME G PRAM [*, T]-PTIME G EXPSPACE (3)

PRAM [*]-PTIME = RAM [*]-PTIME (4)

PRAM [T, ,]-PTIME = RAM [T, ,1-PTIME (5)

These facts follow from theorems in Chapters 4-8, which give more precise time and space

bounds.

Chandra and Stockmeyer (1976) and Goldchlager (1978) put forward the Parallel

Computation Thesis: time on a "reasonable" parallel machine is polynomially related to

space on a logarithmic-cost sequential machine (for example, a TM). For a thorough

discussion of restrictions necessary for a "reasonable" parallel machine, see Parberry

(1987). Basically, a parallel machine is reasonable if the number of processors is restricted

to an exponential and the length of cell contents is bounded by an exponential.

I

4

The results in (1) are the parallel analogues of the results of Hartnanis and Simon

(1974) and Simon (1977) for sequential RAMs. Because of the very long numbers that the

RAM[*] and RAM[1,] can generate and because of the equivalence of polynomial time on

these models to PSPACE, the RAM[*I and RAM[TI have sometimes been viewed as

"parallel." Thus, the PRAM[*] and PRAM[T,,1 may be viewed as "doubly parallel." The

results in (1) are therefore also significant in that introducing unbridled parallelism to a

random access machine with unit-time multiplication or unit-time unrestricted shift

decreases the running time by at most a polynomial amount.

The results in (2) are notable because of their possible implications for the robust class

NC, which can be characterized by several different models of parallel computation (Cook,

1985). If we could reduce the number of processors used by the simulation of a PRAM[*],

PRAM[*, I, or PRAM(IT,,1 by a PRAM from an exponential number to a polynomial

number, then NC would be the languages accepted by PRAM[*]s, PRAM[*,+Is, or

PRAM[T,]s, respectively, in polylog time with a polynomial number of processors.

Simon (198 1a) showed that PSPACE Q RAM[*,]-PTIME Q EXPSPACE. The results

in (3) show that the same upper bound holds for a parallel RAM[*,TI and give a lower bound

stronger than PSPACE, separating a PRAM [*, T from PRAMs with the instruction sets

previously considered, since it is widely believed that NEXPTIME strictly includes PSPACE.

This result does not contradict the Parallel Computation Thesis, however, since the numbers

created by multiplication and shift together are too long and complex to be "reasonable."

The results in (4) and (5) are implied by (1), but we note these because we strengthened

the time bounds by more direct simulations than through the results in (1).

We have also vroved some results for probabilistic PRAMs (prob-PRAMs). Reif

(1984) simulated a prob-RAM[*,-t-] M with time bound T (n), memory bound S (n), and

integer bound I (n) by a prob-PRAM[*,+] in time 0 (S (n) log I (n) + log T (n)). We simulate

M by a deterministic PRAM[*,+] in time 0 (S (n) log I (n) log (S (n)T(n))), then extend the

simulation to a prob-PRAM[*,-].

In Chapter 2, we review the relevant literature, and in Chapter 3, we formally define our

model. Chapters 4 and 5 contain the multiplication and division results. Chapter 6 contains

our theorems relating to PRAMs with shifts. We establish bounds on the computational

power of time-bounded PRAMs with both multiplication and shift in Chapter 7. Chapter 8

contains our work on PRAMs with probabilistic choice. Chapter 9 contains simulations of

PRAMs with enhanced instruction sets by sequential RAMs witl the same instruction sets.

In Chapter 10, we discuss the effects of variations in the definition of the basic PRAM on our

simulations, and in Chapter 11, wie summarize our results and present some open problems

arising from our work.

A preliminary version of Chapters 4, 5, and 6 appeared at the 22nd Annual Conference

on Information Sciences and Systems in Princeton, New Jersey, in March 1988 (Trahan et

al., 1988).

I
!
I
I
I

Chapter 2. Literature Review

In this chapter, we survey research done on instruction sets for RAMs and PRAMs. We

also review results relating the PRAM to other models of parallel computation and briefly

discuss previous work on probabilistic models of computation. Unless otherwise specified, a

RAM has unit-cost addition, subtraction, Boolean operations on bit vectors, conditional

jumps, and indirect reads and writes.

* Instruction sets

Hartmanis (1971) introduced the Random Access Stored Program (RASP) machine, the

first computational model with random access memory. Cook and Reckhow (1973)

presented a restricted RAM model whose instruction set did not include Boolean operations.

We shall call this model an rRAM. A RASP and rRAM can simulate each other with at most

a constant factor loss in time. Let I(y) denote the execution time of an instruction on an

rRAM, where y is the size of the operands. They simulated a Turing machine (TM) running

in time T(n) by an rRAM running in time 0 (T(n)'1(T(n))) and an rRAM running in time

T (n) by a TM running in time O (T 3 (n)), if l (y) is constant, or O (T 2 (n)), if l (y) is

logaridrnic. Thcy also established a strict time hierarchy for rRAMs. Wiedermann (1983)

improved the bound for the logarithmic time measure to 0 (T 2(n) / log US (n)), where US (n)

is the number of registers used by the rRAM.

Sch6nhage (1980) proved that for a successor RAM, that is, a RAM without Boolean

operations and whose set of arithmetic instructions is restricted to adding one to a register's

contents, successor -RAM -PTIME = P.

The four papers upon which our work is squarely based are Hartmanis and Simon

(1974), Pratt and Stockmeyer (1976), Simon (1977), and Fortune and Wyllie (1978).

7

Hartmanis and Simon studied the RAM[*], proving RAM [*]-PTIME = PSPACE.

Thus, the inclusion of multiplication strengthens the RAM[* over the RAM of Cook and

Reckhow. To simulate a RAM[*] on a Turing machine, Hartmanis and Simon treated the

long numbers generated with multiplication by manipulating only individual bits of registers.

In only polynomial space, a TM can address any bit of a register whose contents can grow

exponentially long. They also established that the same results hold if the multiplication

instruction is replaced by an instruction for the concatenation of two strings.

Pratt and Stockmeyer studied a restricted RAM[T,,1, or vector machine, as they called

it. A vector machine does not have arithmetic operations, and shift distances are restricted to

a polynomial, hence restricting the lengths of register contents to an exponential. They

proved that the class of languages recognized in polynomial time on a vector machine is

equal to PSPACE, also by manipulating individual bits of registers. A vector machine is

often viewed as a parallel computer in which each processor handles a single bit: a Boolean

operation is seen as an instruction executed simultaneously by each processor and a shift is

seen as a communication step between processors. Simon (1977) removed the restrictions on

shift distances and allowed addition and subtraction, showing that the class of languages

recognized in polynomial time on this machine (a RAM[T,,1, in our notation) is still equal to

PSPACE. He dealt with the extremely long numbers that a RAM[T,,] can generate by

working with encodings of register contents. We discuss this encoding in detail in Chapter 6.

Fortune and Wyllie (1978) introduced the PRAM model, establishing that the class of

languages recognized in polynomial time on this model is also equal to PSPACE. They

showed that in space 0 (T2 (n)), a TM can simulate a PRAM running in time T(n). The TM

executes a procedure that checks that at time t, processor PI executed instruction number i,

leaving c in its accumulator. This procedure is recursive in time. Fortune and Wyllie also

showed that for nondeterministic PRAMs, the class of languages recognized in polynomial

time is equal to the class of languages recognized in exponential time by a nondeterministic

TM.

Hartmanis and Simon (1974), Pratt and S tockmeyer (1976), and Fortune and Wyllie

(1978) all used basically the same method to simulate a space-bounded TM. For all pairs of

TM configurations a and 13, the simulating machine Q first generates a transition matrix

indicating whether the simulated TM can make a transition from a to 3 in one step. By

successive squarings, Q then computes the transitive closure of the matrix, which gives the

T(n)-step transition matrix, and reads from the resulting matrix whether the TM starting in

the initial configuration reaches an accepting configuration in T(n) steps. Fortune and

Wyllie assigned one processor to each configuration; Pratt and Stockmeyer put the entire

transition matrix into a single register, then squared it with shifts and Boolean operations;

and Hartmanis and Simon did the same as Pratt and Stockmeyer, using multiplication as a

restricted shift operator. It is interesting to note that Hartmanis and Simon used only the

shifting ability of multiplication, but no other property.

Recall that a vector machine is a RAM[T,,1] without addition or subtraction and whose

register content lengths are bounded by an exponential. Stockmeyer (1976) established a

separation between time-bounded vector machines and time-bounded RAM[*]s without

Boolean operations. He described a language that can be accepted in constant time by a

vector machine, but requires linear time on a RAM[*] without Boolean operations.

Let RP denote the class of languages accepted in polynomial time on a probabilistic

Turing machine. (We discuss RP later in this chapter.) In some early work focusing on

I9

powerful instruction sets, Sch6nhage (1979) demonstrated that for a RAM without Boolean

operations, RAM [*]-PTIME C RP and NP RAM [*, +]-PTIME. Thus, the exclusion of

Boolean operations appears to weaken the RAM[*] model since RP c PSPACE.

Two parallel models without shared memory were presented by Goldschlager (1982)

and Savitch and Stimson (1979). Goldschlager called his model a conglomerate. A

conglomerate is an infinite collection of identical finite-state machines connected according

to some connection function. The computing ability of a conglomerate arises from the

connection function. Goldschlager argued that the set of feasibly buildable machines is the

set of conglomerates whose connection functions can be computed in polynomial space on a

TM. Savitch and Stimson called their model a PRAM; let us call it a tree-PRAM to

distinguish it from our version. The tree-PRAM differs from our PRAM in the

communication between processors. In the PRAM, any processor may communicate with

any other through a shared memory. In the tree-PRAM, there is no shared memory; a

processor may communicate only with its parent (the processor that activated it) and its

children (the processors that it activates). Savitch and Stimson proved the equivalence of

polynomial time on a tree-PRAM and polynomial space on a RAM, where space on a RAM

is defined as the sum of the lengths of the contents of the registers at any time.

ISavitch (1982) considered the tree-PRAM with an expanded instruction set, allowing

| the processors three string manipulation instructions: concatenation of two strings,

extraction of the first half of a string, and extraction of the second half of a string. He proved

I that the class of languages accepted in polynomial time by this model equals PSPACE.

Hartmanis and Simon (1974) proved that the class of languages recognized in polynomial

time on a sequential RAM with concatenation is equal to PSPACE, so the parallelism

I

1o

allowed in the tree-PRAM with the same instruction set provides no more power, to within a

polynomial in time.

Division is a natural instruction for us to consider as a part of our instruction set.

Hartmanis and Simon (1974) proved that RAM[*, +]-PTIME = PSPACE. Simon (1981a)

showed that a RAM with division and left shift can be extremely powerful. He proved

RAM [t+g]-PTIME = ER, where ER is the class of languages accepted in time

222 n

by Turing machines. At first glance, this is a surprising result: for a RAM with left shift and

right shift, we already know that RAM [T, 4]-PTIME = PSPACE. Simon proved ERQ

RAM [T,]-PTIME by building very long integers with the left shift operation and then

manipulating them as both integers and binay strings. Division is used to generate a

complex set of strings representing all possible TM configurations. (Note that right shift

cannot replace division in building these strings.)

In the same paper, Simon studied the inclusion of both multiplication and shift in the

instruction set and a probabilistic version of a RAM. Using the same encoding that he had

previously used to simulate a RAM[T,,], he proved RAM [*, TI-PTIME Q EXPSPACE. A

RAM with multiplication and shift can generate more complex numbers than a RAM with

shift alone; hence, the size of the encoding of the numbers increases. This complexity

accounts for the increase from PSPACE to EXPSPACE. Simon called his probabilistic

model a stochastic RAM. This RAM has a random number generator that, on operand x,

returns a random integer uniformly distributed in the interval [0, x]. A stochastic RAM

accepts input co if the probability of reaching an accepting state is greater than 1/2. Simon

exploited this acceptance condition in his proofs, proving the following results:

stochastic -RAM [TI-PTIME = ER, NEXPTIME Q stochastic-RAM [*]-PTIME, and

NEXPTIME Q stochastic -PRAM -PTIME. Simon claimed that this model is equivalent to a

prob-PRAM where each processor has an unbiased coin of its own (that is, if the stochastic

RAM has sufficiently powerful arithmetic instructions (* or T) to generate long numbers

quickly enough).

9 Relationships between RAMs and TMs

Hopcroft et al. (1975) described a simulation of a TM running in time T(n) 2! n log n

by a RAM running in time 0 (T(n) / log T(n)). The key to the simulation is that, for each

block of TM tape of size 0 (log T(n)), the RAM precomputes a look-up table containing the

contents of that block after 0 (log T(n)) steps of the TM.

Katajainen et al. (1988) proved that a T (n) time-bounded, S (n) space-bounded, and

U (n) output-length-bounded TM can be simulated by a RAM in

0 (T(n) + (n+U(n)) loglog S(n)) time.

Measuring space on a RAM as the sum of the lengths of the contents of all registers

used by the RAM, Slot and van Emde Boas (1988) established that an off-line TM running in

space S(n) can simulate an off-line RAM running in space S(n). They also showed that a

simulation with no loss in space is not possible for the on-line versions.

* Relationships between PRAMs and other computational models

Stockmeyer and Vishkin (1984) established that parallel time and number of processors

on a concurrent read, concurrent write (CRCW) PRAM correspond to depth and size for

unbounded fan-in circuits. Time and depth correspond to within a constant factor, number of

processors and size correspond to within a polynomial. Because we will use their results

frequently, we state their theorems here,

I|

IL

12

Theorem 2.1. (Stockmeyer and Vishkin, 1984) Let Z be a PRAM with time bound T(n) and

processor bound P (n). There is an unbounded fan-in circuit C,. that simulates Z in depth

0 (T(n)) and size 0 (P (n)T(n)[T(n)(n+T(n)) + (n+T(n))3 + (n+T(n))(n+P (n)T(n))]).

Proof (sketch). See the proof of Lemma 9.3.1.1 for a description of the circuit C,,.

Theorem 2.2. (Stockrneyer and Vishkin, 1984) Let C be an unbounded fan-in circuit of size

S ar d depth T with n inputs. There is a PRAM Z that simulates C in time 0 (T) with

O (S + n) processors.

Proof (sketch). Each processor of Z simulates a wire in C, and each memory cell in Z

simulates a gate in C. Machine Z simulates C one level at a time. To simulate an OR gate,

the corresponding cell is initially set to 0. A processor that is simulating a wire into that gate

writes I into the cell if its wire carries a 1, and it does not write if its wire carries a 0. To

simulate an AND gate, the corresponding cell is initially set to 1. A processor that is

simulating a wire into that gate writes 0 into the cell if its wire carries a 0, and it does not

write if its wire carries a 1. '

Stockmeyer and Vishkin also related time and number of processors on a CRCW

PRAM to number of alternations and space on an alternating TM.

The Hardware Modification Machine (HMM) was defined by Dymond and Cook

(1980). An HMM comprises a set of finite-state machines, called units. Each unit reads a

constant number of input symbols from neighboring units and computes an output symbol

based on its inputs and current state at each time step. Each unit has "taps" on the outputs

of other units through which it reads its inputs. At each step, a unit may relocate one of its

taps. Ruzzo (1985) defined a restricted PRAM (rPRAM) with the following constraints:

each processor has a finite local memory; there are no Boolean operations; the only

13

arithmetic instructions are successor and doubling; and shared memory is divided into

blocks, where processor Pi owns the ith block. Ruzzo showed that HMMs and rPRAMs are

equivalent, to within a constant factor, in both time and hardware simultaneously.

Dymond and Tompa (1985) established that for all T(n) _ n,

DTIME (T(n)) g PRAM-TIME (T"6(n)). Their simulation features the use of a look-up

table like that of Hopcroft et al. (1975).

Hong (1986) gave the following informal definitions of space, parallel time, and

sequential time as they apply to various models.

(1) The space (width) is the maximum length of intermediate information in
the computation.

(2) The parallel time (reversal) is the total number of phases. A phase is a
period of the computation during which no information written on the work
space is read during the same period.

(3) The sequential time is the total number of primitive operations during the
computation.

He related these complexity measures in the Similarity Principle: "All idealized

computational models are similar in the sense that their parallel time, their space, and their

sequential time complexities are polynomially related simultaneously." In support of the

Similarity Principle, Hong established that the following computational models are similar:

TM (reversal, space)

RAM[*,+] (reversal, space)

Vector Machine (time, space)

Uniform Circuit (depth, width)

PRAM[*,+] (time, space)

IA

14

Parberry (1986) demonstrated that, with enough processors, a CRCW PRAM can

compute any recursive function in constant time.

Ranade (1987) presented a simulation of a P processor CRCW PRAM on a P node

butterfly network such that the network simulates each step of the PRAM in 0 (log P) time

with high probability. He used randomness only to select a hash function to distribute the

shared memory of the PRAM among the nodes of the butterfly network. Routing in the

network is deterministic and oblivious.

Alt et al. (1987) gave a nonuniform deterministic simulation of an exclusive read,

exclusive write (EREW) PRAM on a bounded degree processor network. If the PRAM has

P processors and S cells of shared memory, then the network simulates each step in

O (log P log S) time. If the PRAM is CRCW, then the simulation time increases to

O (log 2 P log S). For a restricted network, they proved a lower bound of

Q(log P log S / loglog S) time to simulate an EREW PRAM.

Cook (1980), Vishkin (1983b), and Parberry (1987) provided good surveys on parallel

models of computation. Karp and Ramachandran (1988) gave a good survey of parallel

algorithms.

9 Probabilistic models

To close this chapter, we survey some of the work done on probabilistic models of

computation.

de Leeuw et al. (1956) showed that the ability to make random choices does not change

the (unbounded) computational power of Turing machines (TMs), Santos (1969, 1971)

investigated a more general notion of probabilistic Turing machine (PTM) allowing biased

random choices; his PTMs have the same power as PTMs allowing only unbiased choices.

I
is

Gill (1977) defined a PTM as being allowed to toss an unbiased coin. He defined Blum

complexity measures for time and space. PP is defined as the class of languages recognized

by polynomial time bounded PTMs (no error bounds). BPP is the class of languages

recognized by polynomial time bounded PTMs with bounded error probability. VPP is the

class of languages recognized by polynomial time bounded PTMs with zero error probability

for inputs not in the language. (Note: VPP is more often designated R or RP; I will

henceforth use RP to designate this class.) ZPP is the class of languages recognized by

PTMs with polynomial bounded average time and zero error probability (RP n co -RP).

Gill showed the following:

QBPP Q

P CZPP QRP PP Q PSPACE.

cNP Q

He also showed that only partial recursive functions are probabilistically computable. He

described a palindrome-like language that can be recognized by a fixed one-tape PTM faster

than by any one-tape deterministic TM (DTM). He proved that a PTM with time bound

T(n) can be simulated by a DTM in time 0 (T 2 (n)2T(n)).

Simon (198 1b) proved RPSPACE = PSPACE (where RPSPACE is polynomial space on

a PTM). He accomplished this by showing RPSPACE = RAM [*]-PTIME; the RAM[*]

treats the computation of the PTM as a Markov chain to compute the probability of

acceptance.

Rabin (1976) gave a general discussion of probabilistic algorithms, considering three

types: (1) algorithms that halt within expected time f (n), always producing the correct

16

answer and always terminating (sometimes called Las Vegas algorithms), (2) algorithms that

may produce an erroneous answer, and (3) algorithms that may produce an erroneous answer

and may (with probability 0) not halt. (Algorithms of types (2) and (3) are sometimes called

Monte Carlo algorithms.) The randomness he allowed is choosing an integer in (1,.n }.

Welsh (1983) surveyed various randomized algorithms. He also surveyed knowledge

about RP and random log-space (RL: L Z RL Z NL C P).

Reif (1984) investigated prob-PRAM[*,+]1 simulations of the prob-RAM[*,+]. He used

the CREW version. We present his results in detail in Chapter 8. Reif also showed how

probabilistic choice can be removed from prob-PRAMs with two-sided error by introducing

nonuniformity, with some increase in time and processor bounds.

Robson (1984) demonstrated that a prob-RAM can simulate a deterministic one-tape

TM in expected time 0 (T(n) / loglog T(n)) under the log-cost criterion. The prob-RAM

handles the TM tape in blocks. Note that Hopcroft et al. (1975) showed a simulation of a

multitape TM in 0 (T (n) / log T (n)) unit-cost time on a deterministic RAM.

17

Chapter 3. Definitions and Two Key Lemmas

ram n. 1. A male sheep. 2. (Capital R) A constellation and sign of
the zodiac, Aries. 3. Any of several devices used to drive, batter, or
crush by forceful impact.

pram n. (Chiefly British) A perambulator: a baby carriage.

(Morris, 1980)

We study a deterministic PRAM similar to that of Stockmeyer and Vishkin (1984). A

PRAM consists of an infinite collection of processors P0 , P 1, , an infinite set of shared

memory cells, c (0),c (1), , and a program which is a finite set of instructions labeled

consecutively with 1, 2, 3, • . All processors execute the same program. Each processor

has a program counter. Each processor P,, has an infinite number of local registers: r.(0),

rm(1), •••. Each cell c (j), whose address is j, contains an integer con (j), and each register

rm(j) contains an integer rconm(j).

For convenience we use a PRAM with concurrent read and concurrent write (CRCW)

in which the lowest numbered processor succeeds in a write conflict. At time t in a

computation of a PRAM, at most 2' processors are active. Since we are concerned with at

ieast polylog time, there are no significant differences between the concurrent read /

concurrent write (CRCW), the concurrent read / exclusive write (CREW), and the exclusive

read / exclusive write (EREW) PRAMs because the EREW model can simulate the CRCW

model with a penalty of only a logarithmic factor in time (log of the number of processors

atteiopting to simultaneously read or write) (Cook et al., 1986; Borodin and Hopcroft, 1985;

Fich et al., 1988b; Vishkin, 1983a). If one or more processors attempt to read a cell at the

same time that a processor is attempting to write the same cell, then all reads are performed

before the write.

!
I

18

Initially, the input, a nonnegative integer, is in c (0). For all m, register r,,(0) contains

m. All other cells and registers contain 0, and only P 0 is active. A PRAM accepts its input

if and only if P 0 halts with its program counter on an ACCEPT instruction.

In ,ime 0 (log n), a processor can compute the smallest n such that con (0) < 2' - 1; the

PRAM takes this n as the length of the input. Whenever con (i) is interpreted in two's

compler.ent representation, we number the bits of con (i) consecutively with 0, 1, 2,

where bit 0 is the rightmost (least significant) bit.

A PRAM Z has time bound T (n) if for all inputs c of length n, a computation of Z on co

halts in T (n) steps. Z has proc ssor bo.-d f) if for all inputs o of length n, Z activates at

most P (n) nrocessors dunng a compta: -)n (I tCo. We assume that T(n) and log P (n) are

boi r, ne-cun'actible in the simulations of a PRAM[op] by a PRAM, so that all processors

have values of T (n) and P (n).

We allow indirect addressing of registers and shared memory cells through register

contents. The notation c (r,.(j)) refers to the cell of shared memory whose address is

rcon, (j), and r (r .(j)) refers to the register of P,, whose address is rconn(j).

The basic PRAM model has the following instructions. When executed by processor

Pr, an instruction that refers to register r (i) uses r.(i).

r (i)--k (load a constant)
r (i)<--r (j) (load the contents of another register)
r (i)<--c (r (j)) (indirect read from shared memory)
c (r (i))---r (j) (indirect write to shared memory)
r (i)<--r (r (j)) (indirect read from local memory)
r (r (i))--r (j) (indirect write to local memory)
ACCEPT (halt and accept)
REJECT (halt and reject)
FORK label 1, label 2 (Pn halts and activates P2, and P2,,+, setting their

program counters to label 1 and label 2, respectively.)
r (i)--BIT(r(j)) (read the rconn(j)th bit of con (0) (the input))
CJUMP r (j) comp r (k), label (jump to instruction labeled label on

I
19

condition rconm(j) comp rconm(k), where the
arithmetic comparison comp c I<, ,=, , >, }),

r(i)---r(j) 0 r(k) for 0 E (+, -, bool)
(addition, subtraction, bitwise Boolean operations)

Processor P 0 can perform a FORK operation only once. This restriction is necessary to

prevent the activation of multiple processors with identical processor numbers. This is also

the reason why Pm halts when it performs a FORK.

In the definition of the FORK instruction given by Fortune and Wyllie (1978), the

processor executing a FORK remains active and activates the lowest numbered inactive

processor.

For an integer d, define len (d) as the minimum integer w such that

-2- - 1 :5 d < 2w- l - 1. Thus, d has a two's complement representation with w bits. Let w =

max (len (rconm(j)), len (rconm(k))). To perform a Boolean operation on rconm(j) and

rconm(k), the PRAM performs the operation bitwise on the w-bit two's complement

representations of rcon,(j) and rconm(k). The PRAM interprets the resulting integer x in

w-bit two's complement representation and writes x in rm(i). We need at least w bits so that

the result will correctly be positive or negative.

Let T (respectively, 1) denote the unrestricted left (respectively, right) shift operation:

the instruction r(i)--r(j) T r(k) (respectively, r(i)---r(j) I, r(k)) places rconm(j).2rco(k)

(respectively, rcon,(j) - 2 c0%(k)) into rm(i). The instruction can also be viewed as placing

into rm(i) the result of shifting the binary integer rconm(j) to the left (respectively, right) by

rccnm(k) bit positions.

Let prob-PRAM denote the class of probabilistic PRAMs in which each processor is

allowed to uniformly choose one of a constant size multiset of alternatives at each step.

20

Instructions have the following form:

r(i) +- r(j) 0 r(k); a , a2 ag

in which a,, a 2, ..., ag are instruction labels; the processor executes r(i) +- r (j) 0 r (k),

then uniformly selects one of (al, a2, ..., a.) as the next instruction.

In some variants of the PRAM model, the input is initially located in the first n cells,

one bit per cell. We therefore have the instruction "'r(i).-B/T(r(j))" in order to remove

the effects of a different input convention. This instruction was also used by Reischuk

(1987).

At each step, each active processor simultaneously executes the instruction indicated by

its program counter in one unit of time, then increments its program counter by one, unless

the instruction causes a jump. On an attempt to read a cell at a negative address, the

processor reads the value 0; on an attempt to write a cell at a negative address, the processor

does nothing.

The assumption of unit time instruction execution is an essential part of our definition.

In a sense, our work is a study of the effects of this unit-cost hypothesis on the computational

power of time-bounded PRAMs as the instruction set is varied.

For ease of description, we sometimes allow a PRAM a small constant number of

separate memories, which can be interleaved. This allowance entails no loss of generality

and only a constant factor time loss.

Lemma 3.1. For all T(n), every language recognized in time T(n) by a PRAM R with q

separate shared memories, q a constant, can be recognized in time 0 (T(n)) by a PRAM Z

with one shared memory.

21

Proof. R has q separate shared memories: memo, , memq- 1. Let Cb(k) denote the kth

cell of memb and conb(k) the contents of that cell.

Z maps Cb(k) of R to c (qk + b). Thus, to simulate an access to cb(k), Z computes

qk + b in constant time in its local memory, then accesses c (qk + b). In this manner, Z

simulates each step of R in constant time. 0

In Chapter 10, we discuss the effects of variations in the definition of the basic PRAM

on our results. In particular, we look at the concurrent read and write capabilities, write

conflict resolution scheme, FORA operation, and size of local memory.

In the simulations to follow, the simulating PRAM activates primary and secondary

processors. The Activation Lemma tells how the PRAM activates them and how their

processor numbers are related.

Activation Lemma. A PRAM R' can activate p primary processors, each with s secondary

processors, in 0 (log p + log s) steps.

Proof. In 0 (log p) steps, R' activates p primary processors. By definition of the FORK

command, these processors are numbered p, p+1, • .. , 2p-1. In O (log s) steps, each of

these processors activates s qecondary processors. When each primary processor Pg FORKs,

it sets the program counter of P 2g to indicate that it is a primary processor and the program

counter of P 2g+ 1 to indicate that it is a secondary processor. When each secondary

processor Ph FORKs, it sets the program counters of P2 and P2+h to indicate that they are

secondary processors. After the 0 (log s) steps, the primary and secondary processors are

numbered ps, ps+l, •. •, 2ps-1. Processors numbered js,p <5j 2p-1, are primary

processors. Processors numbered js +k, 0 5 k <_ s-1, are the secondary processors belonging

I
I

22

to Pj, Each primary processor is also considered as a secondary processor belonging to

itself. Primary processor Pj, corresponds to processor Pjp of the simulated machine R. 0

Let R be a PRAM[*]. By repeated application of the multiplication instruction, R can

generate integers of length 0 (n2 ('n)) in T(n) steps, By indirect addressing, processors in R

can access cells with addresses up to 2n 2r (" in T (n) steps, though R can access at most

0 (P (n)T (n)) different cells during its computation. In subsequent chapters, these cell

addresses will be too long for the PRAM and TM simulators to write. Therefore, we first

construct a PRAM[*] R' that simulates R and uses only short addresses. Similarly, a

PRAM[T,I,] can generate extremely long integers and use them as indirect addresses, so we

simulate this by a PRAM[T,I,] that uses only short addresses.

Associative Memory Lemma. Let op Q , 1), ,. For all T(n) and P (n), every I-nguage

recognized with P (n) processors in time T(n) by a PRAM[op] R can be recognized in time

0 (T(n)) by a PRAM[op] R' that uses 0 (p 2 (n)T(n)) processors and accesses only cells with

addresses in 0, ... , 0 (P (n)T (n)).

Proof. Let R be an arbitrary PRAM[opJ with time bound T (n) and processor bound P (n).

We construct a PRAM[op] R' that simulates R in time 0 (T(n)) with P 2 (n)T(n) processors,

but accesses only cells with addresses in 0,..., 0 (P (n)T(n)). R' employs seven separate

shared memories: mem 1, " ", mem 7 . R" uses memories mem I and mem 2 to simulate the

shared memory of R; memories mem 3 , meM4 , and mem 5 to simulate the local registers of R:

and memories mem 6 and mem 7 for communication among the processors. Let cb(k) denote

the kth cell of memb and conb(k) the contents of that cell. R' organizes the cells of mem 1

and mem 2 in pairs to simulate the memory of R: the first component, c1 (k), holds the

address of a cell in R; the second component, c 2(k), holds the contents of that cell. Actually,

in order to distinguish address 0 from an unused cell, c I (k) holds one plus the address. Let

II

23

pair (k) denote the kth memory pair. R' organizes the cells of mem 3, meM 4, and mem 5 in

triples to simulate the local registers of R: the first component, c3 (k), holds the processor

number; the second component, c4 (k), holds the address of a register in R; the third

component, c 5(k), holds the contents of that register. Let triple (k) denote the kth memory

triple. Since R can access at most 0 (P (n)T(n)) cells in T(n) steps, R' can simulate the cells

used by R with 0 (P (n)T(n)) memory pairs and triples.

Let P, denote processor number m of R; let P' denote processor number m of R'.

We now describe the operation of R'. In O (log P (n)) steps, R' activates P (n)

processors, called primary processors. In the next log(P (n)T(n)) steps, each primary

processor activates P (n)T (n) secondary processors, each of which corresponds to a memory

pair and a memory triple.

By the Activation Lemma, primary processor P' corresponds to the processor of R

numbered m / P (n)T(n). The processors numbered m + k, for all k, 0 -k _P(n)T(n)-l

will be the secondary processors belonging to primary processor P'. So, if i < m, then all

secondary processors belonging to P are numbered lower than all secondary processors

belonging to P'. We exploit this ordering to handle concurrent writes by processors in R.

When the secondary processors of P', are not otherwise occupied, they concurrently

read c6 (m) at each time step, waiting for a signal from P' to indicate their next tasks. R'

applies its concurrent read capabilities in this way to implement a constant time broadcast

from a primary processor to all of its secondary processors.

Each secondary processor assigns itself to the memory pairs and triples as follows.

Each secondary processor P belonging to P', j = m + k, handles pair (k) and triple (k). We

call k the assignment number of P'. P' computes its assignment number in constant time.

24

Suppose R' is simulating step t of R in which P9 writes v in c (f). Then the

corresponding primary processor P,, of R' writes f +1 in c1 (P (n)(T(n)-t) + g + 1) and v in

c 2(P (n)(T(n)-t) + g + 1). That is, at step t of R, all primary processors of R' write only

cells with addresses in P (n)(T(n)-t)+l, , P (n)(T(n)-t+l) with the lowest numbered

primary processor writing in the lowest numbered cell in the block. The memory holds a

copy for every time a processor attempts to write c (f). Figure 3.1 is an example, for P (n) =

4 and T (n) = 3, showing which primary processors write in which cells of mem I and mem 2

at each step of R and the assignment numbers of the secondary processors assigned to-those

cells. By this ordering, the copy of a cell in R with the current contents (most recently

written by lowest numbered processor) is handled by the lowest numbered secondary

processor. If at some later step a primary processor P' desires to read con (f) of R, then its

secondary processors read all copies of con (f) and concurrently write their values in c 7(m).

By the write priority rules, the secondary processor reading the current value of con (f) will

succeed in the write.

pair # in R' proc. # in R assignment # step of R

1 P0 1 t-3
2 P1 2
3 P 2 3
4 P 3 4 "
5 Po 5 t=2
6 P 1 6
7 P2 7
8 P3 8
9 Po 9 t I
10 P 1 10
11 P 2 11
12 P3 12

Figure 3.1. Memory allocation: T(n) = 3, P(n) = 4

!
25

Similarly, suppose R' is simulating a step of R in which Pg writes v in rgV). Then PM'

writes g in c 3(P (n)(T(n)-t) + g + 1), f + 1 in c 4(P (n)(T(n)-t) + g + 1), and v in

c5(P (n)(T(n)-t) + g + 1). If at some later step P, desires to read rcon8 (f), then its

secondary processors read all copies of rcong (f) and concurrently write their values in

C7(m).

When a processor P9 of R executes an instruction r (i)*--r () 0 r (k), it reads rcong(j)

and rcong(k), computes v := rcong(j) 0 rcong(k), and writes v in rg(i). The corresponding

processor P, of R' simulates this step as follows. If jis negative, then P' writes 0 in c 6 (m)

and c7(m). Otherwise, P' writes g in c7(m) to indicate that it wishes to read the contents of

a register of P8 and writes 0 in C6 (m) to clear it. Each secondary processor of P' reads

c 7 (m) and compares con 7 (m) with the value of the first component of its assigned memory

triple. P,, writes j + 1 in c 7(m) to specify the address of the register it wishes to read. Each

secondary processor of P', that matches g reads c7 (m) and compares con 7(m) with the

second component of its assigned memory triple. If the contents match for secondary

processor P', which is assigned triple (k), then P' writes con 5(k) in C7(m) and I in C6 (m) to

inform PM' that it has found the desired register contents. P reads C6(m). If con 6 () = 0,

then no secondary processor matched the address; hence, c (j) is a cell of R that has not yet

been written, and PM writes 0 in rm(l). If con 6 (m) = 1, then some secondary processor

matched the address, and P, copies con7(m) to rn(l). Next, P" writes 0 in c 6 (m) and

C7(m) and repeats the process fork, except that P' writes rm(2) instead of rm(1). (Note:

Handling indirect addresses requires two cycles through the above steps.) PM, then computes

v := rconm(1) 0 rconm(2), writing v in rn(l). Next, if i is negative, then PM does nothing.

Otherwise, suppose R' is simulating step t of R. Each primary processor keeps track of t in

its local memory. Then P,, writes gin C3(P (n)(T(n)-t)+ g + 1), i+1 in

26

c4(P (n)(T(n)-t) + g + 1), and v in c5(P (n)(T(n)-t) + g + 1) to complete the simulation of

step t.

Thus, R' uses a constant number of steps to simulate a step of R and only

O (log P (n)T(n)) initialization time. Since P (n) S 2 T(n), R' uses 0 (T(n)) steps to simulate

T (n) steps of R. 0

Observation 1: R' needs only addition and subtraction to construct any address that it

uses.

Observation 2: Each processor of R' uses only a constant number of local registers.

27

Chapter 4. Multiplication

In this chapter, we simulate a time-bounded PRAM[*] by four different models of

computation: basic PRAM, unbounded fan-in circuit, bounded fan-in circuit, and Turing

machine. We establish that polynomial time on a PRAM[*] or a PRAM and polynomial

depth on a bounded or unbounded fan-in circuit and polynomial space on a TM are all

equivalent.

4.1. Simulation of PRAM[*] by PRAM

Let R be a PRAM[*] operating in time T(n) on inputs of length n and using at most

P (n) processors. Let R' be a PRAM[*] that uses only short addresses and simulates R

according to the Associative Memory Lemma. Thus, R' uses 0 (p 2 (n) T (n)) processors,

O (T (n)) time, and only addresses in 0, 1, ..., 0 (P (n) T (n)). Each processor of R' uses only

q registers, where q is a constant.

We construct a PRAM Z that simulates R via R' in 0 (T2 (n) / log T(n)) time, using

O (p 2 (n) T 2 (n) n2 4 T(^) log T(n)) processors. We view Z as having q + 4 separate shared

memories: memo, memq+3. Our view facilitates description of the algorithm to follow.

The idea of the proof is that Z stores the cell contents of R' with one bit per cell and acts as

an unbounded fan-in circuit to manipulate the bits.

Initialization. Z partitions memq into 0 (P (n)T (n)) sections of n2T(n) cells each. Let

S (i) denote the ith section. A section is sufficiently long to hold any number generated in

T(n) steps by R', one bit per cell, in n2T(')-bit two's complement representation. Section

S (i) contains con (i) of R' with one bit of con (i) in each of the first len (con (i)) cells of the

section. R' writes the more significant bits in cells with larger addresses.

I
I

Z partitions each of memo ..., memq-l into 0 (P2 (n)T(n)) blocks of

n2T(n).T(n) log T(n) sections each. Let Bi(m) denote the mth block of mem. A block is

large enough to implement the multiplication algorithm of Sch6nhage and Strassen (1971).

The first section of Bi (m) contains rconm(i) of R' with one bit of rcon,(i) in each of the first

len (rcon,(i)) cells of the section.

Z activates 0 (P2 (n) T(n)) primary processors, one for each processor of R', in time

0 (log P (n)T(n)). Z must quickly access individual cells in each block, so each primary

processor activates 0 (n 2
4T(n) T(n) log T(n)) secondary processors in 0 (T(n)) time

(Activation Lemma). For primary processor Pm, secondary processor P,, j E (m,

m+n2T(")-I }, assigns itself to the (j-m)th cell of the first section of a block. These

processors will handle comparisons.

Secondary processors belonging to P 0 now construct a set of values to be used in the

SQUASH procedure, to be defined later, which handles indirect addressing. The secondary

processors for the first block set conq I (i) = 2i, for all i, 0 < i < log P (n)T(n).

In memq+2, Z builds an address lookup table containing the address of the first cell of

B (m) in cell m of the table, 0!5 m < P (n)T(n). In all memories, the mth block begins at the

same address. These addresses range up to n2 4T(n)p (n)T 2 (n) log T (n), so Z creates the

table in 0 (T (n)) time.

Z next spreads the input integer over the first n cells of S (0) of memq, that is, Z places

the jth bit of the input word in the jth cell of S (0). This process takes constant time for

processors PO, . .', P,,-,, each performing the BIT instruction indexed by their processor

number. (Note that without the r(k)(--BIT(r(i)) instruction, where rcon, (i) = j, this process

would take time 0 (n) because for each j, 1 < j < n, Z would have to construct a mask with a

29

1 in the jth position and O's in all other positions to determine the value of the jth input bit.

If T(n) = o (n), then 0 (n) time is unacceptably high.)

Simulation. We are now prepared to describe the simulation by Z of a general step of

R'. Consider a processor Pg of R' and the corresponding primary processor P, of Z. The

actions of Pm and its secondary processors depend on the instruction executed by Pg of R'.

Pm notifies its secondary processors of the instruction. The following cases arise.

r(i)---r(j) + r(k): Chandra er al. (1985) gave an unbounded fan-in circuit of size

O (x(log*x) 2) and constant depth for adding two integers of length x. Stockmeyer and

Vishkin (1984) proved that an unbounded fan-in circuit of depth D (n) and size S (n) can be

simulated by a CRCW PRAM in time 0 (D (n)) with 0 (n +S (n)) processors (Theorem 2.2).

By the combination of these two results, the secondary processors perform addition in

constant time with their concurrent write ability. This addition requires

0 (n2T(n) (log* (n 2 T(n)))2) processors.

r (i)<--r (j) A r (k): The secondary processors perform a Boolean AND in one step.

Other Boolean operations are performed analogously.

r(i)--r(j) - r(k): The secondary processors add rcong(j) and the two's complement

of rcong (k). This takes constant time.

Comparisons (CJUMP r (i) > r (j), label): For 1 < k < n 2 T(n) , the secondary

processor of the first section that normally handles the kth cell of the section handles the

(n 2T(')-k+l)th cell. Thus the lowest numbered processor reads the most significant bit. Pm

writes a 0 in Cq+3(m). All secondary processors read the n2r(n)th cell in Bi(g) and Bj(g) to

gdetermine whether rcong(i) and rcong(j) are negative. If rcong(i) (rcong(j)) is negative and

the other is not, then Pn writes 2 (1) in Cq+3(m). Otherwise, each secondary processor

I
I

30

allocated to the first section compares corresponding bits of Bi(g) and Bj(g). If both rcong(i)

and rcong (j) are nonnegative, then if the bits are equal, it does nothing; if the bit of Bi (g) is

greater, it writes a I in cq+3(m); if the bit of Bj(g) is greater, it writes a 2 in Cq+3(m). If both

rcon8 (i) and rcong(j) are negative, then if the bits are equal, it does nothing; if the bit of

Bi(g) is greater, it writes a 2 in Cq+3(m); if the bit of Bj(g) is greater, it writes a I in Cq+3(m).

After this step, if rcong(i) = rcong (j), then conq+3(m) = 0; if rcong(i) * rcong(j), then

Cq+3(m) holds the value written by the lowest numbered secondary processor to write. If

COnq+3(m) = 1, then the comparison is true; otherwise, the comparison is false. This process

works by the concurrent write rules of the PRAM. Other comparisons are performed

analogously and all comparisons can be simulated in constant time.

r(i)--r(j) * r(k): We use the following two lemmas.

Lemma 4.1.1. (Schbnhage and Strassen, 1971) A log-space uniform, bounded fan-in circuit

of depth 0 (log y) and size 0 (y log y loglog y) can compute the product of two operands of

length y.

Proof. For inputs of lengthy, Sch6nhage and Strassen (1971) gave a multiplication

algorithm that may be implemented as a bounded fan-in circuit with depth 0 (log y) and size

O (y log y loglog y). 0

Lemma 4.1.2. A log-space uniform, unbounded fan-in circuit of depth O (log y / loglog y)

and size 0 (y2 log y loglog y) can compute the product of two operands of length y.

Proof. Chandra et al. (1984) proved that for any e > 0, a bounded fan-in circuit of depth

D (y) and size S(y) can be simulated by an unbounded fan-in circuit of depth

0 (D (y) / E loglog y) and size 0 (2(1° 9 Y) .S (y)). Combining Lemma 4.1.1 with this result and

setting e = 1, we establish the lemma. 0

31

R' can generate numbers of length up to n2 T(n) . By Theorem 2.2 and Lemma 4.1.2, a

CRCW PRAM can simulate a bounded fan-in circuit performing multiplication in time

0 (T(n) / log T(n)) with O (n 2
4 T(n) T(n) log T(n)) processors.

Indirect addressing: By the Associative Memory Lemma, R' accesses only addresses

of length O (log P (n)T (n)). If Pg wishes to perform an indirect read from c (r (i)), then Pm

and its associated processors perform a SQUASH on Bi(g) in time O (loglog P (n)T(n)). The

goal of SQUASH is to place in a single cell the integer whose two's complement

representation is stored in a section with one bit per cell. In a SQUASH, the secondary

processors associated with the contents of the first 0 (log P (n)T (n)) cells of a block read

their cells. If the kth cell contains a 0, then the kth processor sets Xk := 0. If the kth cell

contains a 1, then the kth processor sets Xk := 2k. (Recall that 2k was previously computed

log P (n)T (n)
during the initialization period.) Next, the secondary processors compute E Xk in

k---O

o (loglog P (n)T(n)) = 0 (log T(n)) time since P (n) <_ 2T('). SQUASH places a number,

which was stored one bit per cell in the first 0 (log P (n)T(n)) cells of a block, into a single

cell.

If processors Pf and Pg of R' wish to simultaneously write c (j), then the corresponding

processors P, and f , of Z will simultaneously attempt to write S (j) of memq. If f< g, then

I < m, and all secondary processors of P are numbered less than all secondary processors of

P,. Thus, in R', Pf succeeds in its write, and in Z, P and its secondary processors succeed

in their writes.

Theorem 4.1. For all T(n) a log n, PRAM [* I-TIME (T(n))

PRAM-TIME(T 2(n) / log T(n)).

I

32

Proof. According to the above discussion, Z simulates R via R'. Initialization takes

O (log(P (n)T(n)) + T(n) + log n) = O (T(n)) time. Z performs indirect addressing in

0 (log T(n)) time, multiplication in 0 (T(n) / log T(n)) time, and all other operations in

constant time. Thus, Z uses time 0 (T(n) / log T(n)) to simulate each step of R'. Z uses

0 (p 2(n)T(n)) primary processors, each with 0 (n 2
4T(n) T(n) log T(n)) secondary

processors. Hence, Z simulates R in 0 (T 2(n) / log T(n)) time, using

O (p 2(n) T2 (n) n' 4T(n) log T(n)) processors. 0

Corollary 4.1.1. PRAM [* I-PTIME = PRAM -PTME.

Corollary 4.1.2. PRAM [*]-POLYLOGTIME = PRAM -POLYLOGTIME.

If T (n) = 0 (log n), then P (n) is a polynomial in n, and Z simulates R in time

o (log2 n / loglog n) with polynomially many processors. Thus, an algorithm running in timc

O (log n) on a PRAM[*] is in NC2 . If T(n) = 0 (logkn), then Z simulates R in time

O (log2kn / (2k loglog n)) with 0 (n2+1oe-t'nlog2n loglog n) processors. So, our simulation

does not show that an algorithm running in time 0 (logn), k> 1, on a PRAM[*] is in NC

because of the superpolynomial processor count. An interesting open problem is to show

either that PRAM [*]-POLYLOGTIME = NC by reducing the processor count to a

polynomial or that NC is strictly included in PRAM[*]-POLYLOGTIME by proving that the

simulation requires a superpolynomial number of processors.

4.2. Simulations of PRAM[*] by Circuits and Turing Machine

We now describe simulations of a PRAM[*] by a log-space uniform family of

unbounded fan-in circuits, a log-space uniform family of bounded fan-in circuits, and a

Turing machine.

t
33i

Lemma 4.2.1. For each n, every language recognized by a PRAM[*] R in time T(n) with

P (n) processors can be recognized by a log-space uniform, unbounded fan-in circuit UC, of

depth 0 (T 2 (n) / log T(n)) and size 0 (n 2 T2 (n) 8T(n) log T(n)).

Proof. The depth bound follows from Theorems 4.1 and 2.1. We now establish the size

bound. Let R' be the PRAM[*] described in Theorem 4.1 that simulates R according to the

Associative Memory Lemma, using 0 (T(n)) time with 0 (p 2 (n) T(n)) processors. Fix an

input length n. Let UC, be a log-space uniform, unbounded fan-in circuit that simulates R'

by the construction given by Stockmeyer and Vishkin (1984) (Theorem 2.1), with one

modification. For each time step of R', we add to UCn a block of depth 0 (T(n) / log T(n))

and size 0 (n 2
4T(n) T(n) log T(n)) that handles multiplication (Lemma 4.1.2). Thus, UCn

has depth 0 (T 2(n) / log T (n)) and size 0 (P (n)T (n)[T (n)(n +T (n)) + (n +T (n))3

+ (n+T(n))(n+P (n)T(n)) + n 2
4T(') T(n) log T(n)]) = 0 (n2 T 2(n) 8T(n) log T(n)), since

P(n)<2T(n).]

Lemma 4.2.2. For each n, every language recognized by a PRAM[*] R in time T (n) with

P (n) processors can be recognized by a log-space uniform, bounded fan-in circuit BC, of

depth 0 (T 2 (n)) and size O(n 2 T 2 (n) 8 T(n) log T(n)).

Proof. Fix an input length n. Let UC, be the unbounded fan-in circuit described in Lemma

4.2.1 that simulates R. Except for the circuit blocks implementing multiplication, the

portions of the circuit that simulate a single time step of S' have constant depth and fan-in at

most 0 (p 2(n) T(n)). Hence, these parts of the circuit can be implemented as a bounded

fan-in circuit of depth 0 (log P (n) + log T(n)). The multiplication blocks may be

Simplemented as bounded fan-in circuits of depth 0 (T (n)) (Lemma 4.1.1). Let BCn be this

bounded fan-in implementation of UC,. Since P (n) < 2T(n), BC,, simulates each step of S'

!

34

in depth 0 (T (n)), and hence BCn simulates S via S' in depth 0 (T 2 (n)) and size

O(n 2 T 2(n) 8T(n) log T(n)). 0

Theorem 4.2. For all T(n) > log n, PRAM[*]-TIME(T(n)) QDSPACE(T2 (n)).

Proof. Theorem 4.2 follows from Lemma 4.2.2 and Borodin's (1977) result that a log-space

uniform, bounded fan-in circuit of depth D (n) can be simulated in space 0 (D (n)) on a

Turing machine. 0

Corollary 4.2.1. PRAM [*]-PTIME = PSPACE.

4.3. Direct Simulation of PRAM[*] by Turing Machine

For the sake of completeness, we describe a simulation of PRAM[*] R via R' by a

deterministic Turing machine M that uses space T 2(n). This is a direct simulation by the

TM, rather than through circuits, as in Section 4.2. M simulates R' by writing only one bit at

a time of a cell's contents. Let X denote the empty string.

Let R be a PRAM[*] operating in time T(n) on inputs of length n and using at most

P (n) processors. Let R' be a PRAM[*] that accesses only short addresses and simulates R

according to the Associative Memory Lemma. Thus, R' uses 0 (P2 (n) T(n)) processors,

0 (T(n)) time, and only addresses in 0, 1, ..., 0 (P (n) T(n)). Each processor of R' uses only

q registers, where q is a constant.

We construct a deterministic Turing machine M that simulates R via R' in space T 2(n.).

By the definition of PRAM, R' accepts input (o if and only if, by the execution of R' on Co,

P, executes an ACCEPT instruction. To check this condition, M executes the mutually

recursive procedures PCOUNTER (m, t), which returns the contents of the program counter

35

of Pm at time t, and VALUE (b, i, m, t), which returns the bth bit of rconm(i) at time t, if

m * X, or the bth bit of con (i) at time t, if m = X. (VALUE is based on the procedure FIND

in Hartmanis and Simon (1974).)

PCOUNTER (m, t) works as follows. Let p be the value returned by

PCOUNTER (m, t. PCOUNTER (m, t) depends on r, the value returned by

PCOUNTER (m, t-1). If r indicates that Pm was not active at time t-1, then PCOUNTER

determines by calls to PCOUNTER for time t-I whether PLm..aj activated Pm at time t-1

with a FORK instruction. If PLm/2J executes FORK label 1, label 2, then if m is even,

p = label 1; otherwise, p = label 2. If r indicates that Pm is active at time t-I and step r is

not a CJUMP, REJECT, or ACCEPT instruction, then p = r+1. If step r is

CJUMP r (i) comp r (j), label 3, where comp is an integer comparison, then PCOUNTER

repeatedly calls VALUE for time t-I to compare rconm(i) and rconm(j). If the comparison

is true, then p = label 3; otherwise, p = r + 1. If instruction r is an ACCEPT (REJECT), then

p = r.

VALUE (b, i, m, t) works as follows. Let v denote the output of VALUE (b, i, m, t).

Suppose m = X. By calls to PCOUNTER, M determines whether some processor wrote c (i)

at time t-1. If no processor wrote c (i), then v = VALUE (b, i, X, r-I). Otherwise, suppose

Pm executed instruction c(r(k))---r(j) such that rconm(k) = i and was the lowest numbered

processor that wrote c (i) at time t-1. Then v = VALUE (b, j, m, t-l).

Suppose m # X. By calls to PCOUNTER, M determines whether Pm wrote r,(i) at time

t-1. If not, then v = VALUE (b, i, in, t-l). Otherwise, suppose Pm executed instruction

instr that wrote rm(i) at time t-1.

36

If instr is r(i)--k for a constant k, then v is bit b of k.

If instr is r(i)---r(j), then v = VALUE(b, j, m, t-1).

If instr is a Boolean operatior, such as r (i)---r (j) A r (k), then v is the result of the

Boolean operation on the bth bits of the operands, in this case, v =

VALUE(b, j, m, t-1) A VALUE (b, k, m, t-1). M handles the other Boolean operations

similarly.

If instr is an arithmetic instruction rather than a Boolean instruction, then the execution

of VALUE is more complicated. Suppose instr is a multiplication instruction such as

r (i)4-r(j) * r (k). Letw := max{ len (rconm(j)), len (rconm(k))) be the length of the longer

operand. Then rconm(i) is the sum of at most w partial products, each of length at most 2w.

The value of bit b of rconn(i) depends on bit b of each partial product and on the carry of

length at most log w from column b-1. Since w can be as large as 2T(n) , M cannot write all

w partial products in polynomial space. So, M computes the sum of the w partial products

that contribute to bit b as follows. M computes the carry from column b-I by computing the

sum of each column and the carry from each column from right to left starting at the

rightmost column. Each partial product is the product of rconm(j) and a bit of rconm(k). M

uses an accumulator to keep a running total of the sum of the partial products in each

column. Suppose M is computing the sum of the sth column. M uses two pointers: one

points to the bit of rconm(j) involved in the sth column of the gth partial product, the other to

the bit of rconn(k) involved in the sth column of the gth partial product. Recursive calls to

VALUE return the values of these bits. M computes their product (Boolean AND) and adds

the product to the accumulator. M then shifts the pointers to point to the bits involved in the

sth column of the (g +1)st partial product, finds these bits, computes their product and adds it

37

to the accumulator, and so on until the sth column of all w terms have been summed. The

carry from column s to column s+l equals the sum of the sth column shifted right by one bit

position. This process continues until the sum of column b is computed; the value of the bth

bit of rcon. (i) is the lowest-order (rightmost) bit of this sum.

If the multiplier, rconm,(k), is negative, then M multiplies rconm(j) by I rconm(k) I and

adjusts the sign at the end.

If instr is an addition or a subtraction instruction, thea M's actions are similar to, but

simpler than, its actions for a multiplication instruction.

If instr is an indirect write, such as r (i)+--r (r (j)), then, by calls to VALUE for time t -1,

M obtains the bits of rconmn(j). Then v = VALUE (b, rconmn(j), rn, t-l). If instr is

r (i)+--c (r (j)), then v = VALUE (b, rconm(j), X, t-l). By the Associative Memory Lemma,

M can write rcon (j) in O (T(n)) space.

Theorem 4.3. For all T(n) _ log n, PRAM [*]-TIME (T(n)) c DSPACE (T 2(n)).

Proof. M simulates R via R' by the simulation described above.

The input is n bits long and the length of the contents of any cell may at most double at

each step, so the length of each cell's contents can grow to at most n2T(') bits. Hence, M

can write b, the bit number, in 0 (T(n)) space. M can write i, the cell address, in

O (log P (n)T(n)) space. Since P (n) _ 2T('), 0 (log P (n)T(n)) = 0 (T(n)). R' activates at

most 0 (P 2(n)T(n)) processors, so M can write m, the processor number, in

0 (log (P 2 (n)T(n))) = 0(T(n)) space. Mcan write t, the time step, in 0 (log T(n)) space.

Therefore, M can write the parameters of VALUE and PCOUNTER in 0 (T(n)) space.

Consider the space M requires to execute the simulation. M writes all the variables

used in one invocation of VALUE or PCOUNTER in space 0 (T(n)), the same space required

I

38

to write the parameters of VALUE or PCOUNTER. If an instance of VALUE or PCOUNTER

with time parameter t makes a recursive call to VALUE or PCOUNTER, then the called

instance will have time parameter t-1. Recall that R' simulates R in time 0 (T(n)), so the

depth of recursion is 0 (T(n)). Hence, with linear space compression, M simulates R via R'

in space T 2(n). El

39

Chapter 5. Division

In this chapter, we study the division instruction. Let us assume that the division

instruction returns the quotient. We are interested in the division instruction for two reasons.

First, division is a natural arithmetic operation. Second, Simon (1981a) has shown that a

RAM with division and left shift (T) can be very powerful. He proved RAM [T,+]-PTIME =

ER, where ER is the class of languages accepted in time

21"22 . 2 n

by Turng machines. At first glance, this is a surprising result: for a RAM with left shift and

right shift (1-), we already know that RAM [T, 11-PTIME = PSPACE (Simon 1977). Simon

proved ER Q RAM -[T,+]-PTIME by building very long integers with the left shift operation

and then manipulating them as both integers and binary strings. The division instruction is

used to generate a complex set of strings representing all possible TM configurations. (Note

that right shift cannot replace division in building these strings.)

We consider the power of division paired with multiplication rather than with left shift,

as well as the power of only division with our basic instruction set. From Hartmanis and

Simon (1974), we also know that RAM [*, +]-PTIME = PSPACE.

In the following, let MD be a PRAM[*,+] that uses T(n) time and P (n) processors. Let

MD' be a PRAM[*,+] that uses only short addresses and simulates MD according to the

Associative Memory Lemma. Thus, MD' uses O(P 2 (n)T(n)) processors, O(T(n)) time,

and only addresses in 0, 1, ..., 0 (P (n)T(n)).

We begin by describing the simulation of a PRAM[*,+] by a PRAM. The idea of the

proof is that we modify the simulation of a PRAM[*] by a PRAM (Section 4.1). Because

I
I

40

this simulation depends on the relationship between circuits and PRAMs (Theorem 2.2), we

are interested in the Boolean circuit complexity of division. Beame et al. (1986) developed

a circuit for dividing two n-bit numbers in depth 0 (log n). This circuit, however, is

polynomial-time uniform, and we need the stronger condition of log-space uniformity. Reif

(1986) devised a log-space uniform, depth 0 (log n loglog n) division circuit, and Shankar

and Ramachandran (1987) improved the size bound of this circuit. We will need the

following lemma.

Lemma 5.1.1. A PRAM can compute the quotient of two x bit operands in time 0 (log x)

with 0 ((1/84) x 14) processors, for any 8 > 0.

Proof. Given in Shankar and Ramachandran (1987). 0

Simulation. We construct a PRAM Z that simulates MD via MD' in time 0 (T2(n)).

We modify the simulation of a PRAM[*] by a PRAM (Section 4.1) to deal with division

instructions. By Lemma 5.1.1 with x = n 2T(n), Z can perform a division in time 0 (T (n))

with the available processors and 0 < 8 < 1.

Theorem 5.1. For all T (n) 2! log n, PRAM [*,.+]-TIME (T (n)) PRAM-TIME (T2 (n)).

Proof. By the simulation above, Z simulates each step of MD' in time 0 (T (n)) with

0 (p 2(n) T 2 (n) n2
4 T(,) log T(n)) processors. MD' runs for 0 (T(n)) steps, so Z can

simulate MD via MD' in 0 (T 2 (n)) steps. 0

Corollary 5.1.1. PRAM [*, -]-PTIME = PRAM-PTIME.

Corollary 5.1.2. PRAM [',]1-POLYLOGTIME = PRAM -POLYLOGTIME,

Next, we consider the simulation of a PRAM[*,+] by a Turing machine. We construct a

TM M that simulates MD via MD' in T2 (n) log T(n) space by modifying the simulation of a

PRAM[*] by a TM (Section 4.2).

41

We will need the following lemmas.

Lemma 5.2.1. A log-space uniform, bounded fan-in circuit can compute the quotient of two

x bit operands in depth 0 (log x loglog x) and size 0 ((1/84) x 8), for any 8 > 0.

Proof. Given in Shankar and Ramachandran (1987). 0]

Lemma 5.2.2. For each n, every language recognized by a PRAM[*,+] MD in time T (n)

with P (n) processors can be recognized by a log-space uniform bounded fan-in circuit DCn
of depth O (T 2(n) log T(n)).

Proof. Fix an input length n. Let BC,, be the bounded fan-in circuit described in Lemma

4.2.2 that simulates a PRAM[*]. Let DC, be BC,, with additional circuit blocks for division.

To handle division instructions with operands of length at most x = n 2T(n) , we use the log-

space uniform 0 (log x loglog x) depth bounded fan-in division circuit specified in Lemma

5.2.1. Circuit DC,, is at most at constant factor larger in size than BC,. Hence, DC, uses

depth 0 (T (n) log T (n)) to simulate each step of MD. 0

Theorem 5.2. For all T(n) >- log n, PRAM [*, +]-TIME (T(n)) Q DSPACE (T 2(n) log T (n)).

Proof. Theorem 5.2 follows from Lemma 5.2.2 and Borodin's (1977) result that a bounded

fan-in circuit of depth D (n) can be simulated in space 0 (D (n)) on a Turing machine. 0

Through Theorem 5.2 and the simulation of DSPACE (T (n)) in PRAM-TIME (T (n))

(Fortune and Wyllie, 1978), we can obtain an 0 (T 2 (n) log T(n)) time simulation of a

j PRAM[*,-] by a PRAM. We remove the log T(n) factor by the direct simulation in

Theorem 5.1.

Through Theorem 5.1 and the simulation of PRAM-TIME (T (n)) in DSPACE (T 2 (n))

(Fortune and Wyllie, 1978), we obtain an 0 (T4 (n)) space simulation of a PRAM[*,+] by a

TM. The simulation of Theorem 5.2 is more efficient.

I

42

Corollary 5.2.1. PRAM [*, +]-PTIME = PSPACE.

We now present the simulation of a PRAM[--] by a PRAM. Let D be a PRAM[+.] that

uses T(n) time and P (n) processors. We construct a PRAM Z that simulates D in time

0 (T(n) log (n +T(n))). Z acts as a circuit to simulate the computation of D.

Simulation. We modify the simulation of a PRAM[*] by a PRAM from Section 4. 1. In

T(n) steps, a PRAM[*] can build integers of length n2T(n), whereas a PRAM[+] can build

only integers of length 0 (n +T(n)). As a result, Z partitions the memory into blocks

containing only 0 (n +T (n)) cells each. Z activates P (n) primary processors, each with

O ((15 4) (n +T(n))"8) secondary processors. The simulation proceeds along the same lines

as in Section 4.1 until a division instruction arises. By Lemma 5.1.1, Z can perform a

division in time 0 (log (n +T (n))).

Theorem 5.3. For all T(n) 2t log n, PRAM [+]-TIME (T(n))

PRAM -TIME (T (n) log (n+T (n))).

Proof. By the simulation above, Z simulates D in time O (T(n) log (n+T(n))) with

0 ((p (n)154) (n+T(n))1+8) processors. 0

Corollary 5.3.1. PRAM (-+--PTIME = PRAM-PT!ME.

Corollary 5.3.2. PRAM [+]-POLYLOGTIME = PRAM -POLYLOGTIME,

Observe that a RAM[+] is unable to quickly generate long integers. Therefore, the gap

between the time-bounded power of a RAM[+] and the time-bounded power of a PRAM[+]

is much greater than the gap between the power of a RAM[*] and the power of a PRAM[*].

43

Let PC = {PC 1, PC 2 , ...) be the family of bounded fan-in circuits that simulates the

family C of unbounded fan-in circuits described by Stockmeyer and Vishkin (1984). For a

fixed input size n, the depth of PC,, is 0 (T (n) log P (n)T (n)) and the size is

0 (P (n)T (n)[T (n)(n +T (n)) + (n +T (n)) 3 + (n +T (n))(n +P (n)T (n))]).

Theorem 5.4. For each n, every language recognized by a PRAM[+-'-] D in time T(n) with

P (n) processors can be recognized by a log-space uniform, bounded fan-in circuit DB,, of

depth O (T (n) log P (n) + T (n) log(n+T (n)) loglog (n+T (n)))).

Proof. Fix an input length n. Let PC,, be the bounded fan-in circuit described above that

simulates a PRAM. Let DBn be PCn with additional circuit blocks for division. To handle

division instructions with operands of length at most x = n + T(n), we use the log-space

uniform, 0 (log x loglog x) depth, bounded fan-in division circuit specified in Lemma 5.2.1.

Circuit DB,, is at most at constant factor larger in size than PC,,. Hence, DBn uses depth

O (log P (n) + log(n +T (n)) loglog (n +T (n))) to simulate each step of D. 0]

Lemma 5.5.1. An off-line Turing machine can compute the quotient of two n bit operands

in 0 (log n loglog n) space.

Proof. Borodin (1977) proved that an off-line TM can simulate a log-space uniform circuit

with bounded fan-in and depth D (n) in space 0 (D (n)). Combined with the log-space

uniform 0 (log n loglog n) depth division circuit of Shankar and Ramachandran (1987), we

have the lemma. -

Theorem 5.5. For all T (n) >_ log n, PRAM [+I-TIME (T (n)) r DSPACE (T2 (n)).

Proof. Fortune and Wylie (1978) simulated each PRAM running in time T(n) by a TM

running in space 0 (T2 (n)). They used recursive procedures of depth 0 (T(n)) using space

O (T (n)) at each level of recursion. If we augment the simulated PRAM with division, then

44

by Lemma 5.5.1, an additional O (log (n+T(n)) loglog (n+T(n))) space is needed at each

level, so 0 (T(n)) space at each level still suffices. Hence, with linear space compression, a

TM with space T 2(n) can simulate a PRAM[+I running in time T(n). 0

Corollary 5.5.1. PRAM [.+]-PTIME = PSPACE.

I

45

Chapter 6. Shift

Pratt and Stockmeyer (1976) proved that for vector machines, that is, a RAM[T,,1,

without addition or subtraction in which left shift (T) and right shift (.1) distances are

restricted to a polynomial number of bit positions, RAM [T,,]-PTIME = PSPACE. Simon

(1977) proved the same equality for RAMs with unrestricted left shift and right shift,

addition, and subtraction. We prove that polynomial time on PRAMs with unrestricted shifts

is equivalent to polynomial time on basic PRAMs and to polynomial space on Turirg

machines (TMs).

6.1. Simulation of PRAM[T,1] by PRAM

By repeated application of the left shift instruction, a PRAM[,,] can generate numbers

of length

in T(n) steps. These extremely large numbers will contain very long strings of O's, however.

(If Boolean operations are used, then the numbers will have very long strings of O's and very

long strings of l's.) Since we cannot write such numbers in polynomial space, nor can we

address an individual bit of such a number in polynomial space, we encode the numbers and

manipulate the encodings. We use the marked interesting bit (MIB) encoding, an

enhancement of the interesting bit encoding of Simon (1977). Let d be an integer. Define

len (d) as the minimum integer w such that -2 - -1 < d 2w-l-1. Let bw- •... bo be the w-

bit two's complement representation of d. An interesting bit of d is a bit bi such that

bi *bi, 4 . (bw is not an interesting bit.)

-.--. .. . • - -- - -- " - " " "

46

If d has an interesting bit at bi and the next interesting bit is at bj, i < j, then the bits

bjbj_-1 ..' bi+1 are identical. If these bits are O's (l's), then we say that d has a constant

interval of 0's (l's) at bj.

If a constant interval has length 1, then the entire interval is a single bit, which is an

interesting bit. We call such an interesting bit a singleton. We mark interesting bits that are

singletons. We define the MIB encoding as

E(0) = Os,

E(01)= Is,

E(d) = (E(a,)q,. E(a 2)q 2, E(a 1)q1 ; r),

where d is an integer, aj is the position of the j th interesting bit of d; qj = s if the j th

interesting bit is a singleton and qj = m if the j th interesting bit is not a singleton; and r is

the value (0 or 1) of the rightmost bit of d. Call qj the mark of the j th interesting bit. Call r

the start bit.

For example, E(01 100) = (E(01 1)m, E(01)m; 0) = ((E(O1)m; 1)m, lsm; 0) = ((lsm;

1)m, lsm; 0). For all d, define val (E(d)) = d. The marks of interesting bits will be useful

for quickly computing E(d+1) from E(d).

An encoding can be viewed as a tree. For the encoding E(d) = (E(at)q. E(a 2)q 2,

E(a I)qI ; r), a node is associated with each of E(a,)qt ,... ,E(a 1)q 1, r, A root node is

associated with the entire encoding of E(d) and holds nothing. A nonroot node holds one of:

Os; Is; r, the start bit; or qj, the mark o" the j th interesting bit. If a node holds Os, Is, or r,

then it is a leaf. If a node holds q,, then it is an internal node, and its children are the nodes

of E(a1). Figure 6.1 contains a sketch of the encoding tree of E(01 100).

47

0

0 Qm 00

mO 0
1 0

Is

Is

Figure 6.1. Encoding tree for E(01100)

For a node a corresponding to E(ak)qk, the value of the subtree rooted at a, val (a), is

ak, the value of E(ak). Thus, val (a) is the position of an interesting bit.

We define level 0 of a tree as the root. We define level j of a tree as the set of all

children of nodes in level j-1 of the tree.

A pointer into an encoding specifies a path starting at the root of the tree. For instance,

the pointer 7.5.9 specifies a path x0,xl,x 2,x3 in which x0 is the root, x I is the 7th child (from

the right) of x0 , x2 is the 5th child ofxj, and X3 is the 9th child of x2. A pointer also

specifies the subtree rooted at the last node of the path.

For an integer d, suppose E(d) = (E(ar)q1 , ..., E(a1)ql;r). We define intbits(d) = t,

the number of interesting bits in d. Viewing E(d) as a tree, we refer to E(as) as a subtree of

E(d). We define the k th subtree at level c of E(d) as the k th subtree from the right whose

root is distance c from the root of E(d). We define depth (d) recursively by

g depth(0)=depth(1)= 1,

depth(d)= I + max{depth(a), ..., depth(a1)}.

I

48

We now present three lemmas, analogous to those of Simon (1977), that bound the

length of a pointer into an encoding. Lemma 6.1.1 bounds the depth of an encoding and the

number of interesting bits in a number generated by a PRAM[T,1]. Let bool be a set of

Boolean operations.

Lemma 6.1.1. Suppose a processor P, executes r(i)4-r(j) 0 r(k), 0 6 (+, t, $,-,

boot }.

i) If 0 is +, then depth (rcon. (i)) < 1 + max depth (rconm (j)), depth (rconm (k)))

and intbits (rconm (i)) <_ intbits (rconm (j)) + intbits (rconm (k)).

ii) If 0 is a Boolean operation, then depth (rconm (i)) <

max (depth (rconm (J)), depth (rconm (k))) and intbits (rconm (i)) <

intbits (rconm (j)) + intbits (rconm (k)).

iii) If 0 is -, then depth (rconm (i)) < 1 + max (depth (rconm (j)), depth (rconm (k))}

and intbits (rconn (i)) S intbits (rconm (j)) + intbits (rconm (k)).

iv) If 0 is T or t, then depth (rconm (i)) S 2 + max{depth (rcon ,(j)),

depth (rconm (k)) I and intbits (rcon, (i)) < 1 + intbits (rconm (j)).

Proof. i) If Pm executes r (i)+-r (j) + r (k), then an interesting bit of rconm (i) is either in

the same position or is one position to the left of an interesting bit of rconm (j) or rconm (k).

As a result, depth may increase by at most 1. For example, using two's complement

representations, if rconm (j) = 011 and rconm (k) = 01, then rcon.. (i) = 0100. The depth of

both addends is 1, while the depth of their sum is 2. Thus, depth (rconm (i)) will be at most 1

+ max (depth (rconm (j)), depth (rconm (k))), and intbits (rcon, (i)) will be at most

intbits (rconm (j)) + intbits (rconm (k)).

49

ii) If Pm executes r (i)+-r (j) V r (k), then an interesting bit of rcon. (i) is an

interesting bit of either rconm (j) or rconm (k). Thus, depth (rconn (i)) will be at most

max (depth (rconm (j)), depth (rconm. (k))), and intbits (rconn (i)) will be at most

intbits (rconm (j)) + intbits (rcon,n (k)). Other Boolean operations produce the same results.

iii) IfPn executes r(i)--r(j) - r(k), and we view r(j) - r(k) as r(j) + (1 + --,r(k)),

then by Parts i) and ii), depth (rconm (i)) will be at most 1 +

max (depth (rconm (j)), depth (rconm (k))), and intbits (rconn (i)) will be at most

intbits (rconm (j)) + intbits (rconn (k)).

iv) IfP. executes r(i)--r(j) T r(k) and E(rcon, (j)) = (E(aq), ..., E(a 1); w), w E

10, 1), then E(rconm (i)) = (E(aq+rcon, (k)), ..., E(a I+rconn (k)), [E(rconm (k))]; x), where

we include E(rconn (k)) if and only if rconn (k) = 0 and w = 1 x = w if rconm (k) = 0, x = 0

if rconn (k) > 0. The claim holds. By a similar argument, the claim holds for right shift. C

Part i) of Lemma 6.1.2 bounds the number of subtrees below first level nodes in an

encoding; Part ii) bounds the number of subtrees below f th level nodes in an encoding, f >

1.

Lemma 6.1.2. Suppose a processor Pm executes r(i)4-r(j) 0 r(k), where 0 E {+, T, $,

-, bool), E(rconn (i)) = (E(a,), ..., E(a 1); wi), E(rconm (j)) = (E(b,), ..., E(b 1); wj), and

E(rconm (k)) = (E(c,), ..., E(c 1); wt), where av, bv, and c, denote the positions of the v th

interesting bits of rconn (i), rconm (j), and rconm. (k), respectively.

i) For E(a,) (that is, the v th subtree at level 1 of E(.-con. (i))),

5 a) if 0 is +, then intbits (av) 5 1 + max {intbits (bq), intbits (Cq)},
q

5 b) if 0 is T or ,1, then intbits (av) < max (intbits (bq)1 + intbits (rconm(k)), and
q

c) if 0 is a Boolean operation, then intbits (a,) S max intbits (bq), intbits (Cq)),

!q

so

and

d) if 0 is -, then intbits (a,) <- 1 + max (intbits (bq), intbirs (Cq) 1.q

ii) For E(P) a subtree at level f > 1, intbits (P) < 1 + max {intbits (q th subtree of
q

rconm (j) at level f), intbits (q th subtree of rconm (k) at level f).

Proof. i) A first level subtree E(a) encodes the position p of an interesting bit in rconm (i).

The subtrees of E(av) encode the positions of interesting bits in p.

a) If Pm executes r (i)--r (j) + r (k), then, as can be seen in ADD , p is either the

position of an interesting bit in rconm () or rconm (k) or p is one plus the position of an

interesting bit in rconm (J) or rconm (k). In the first case, intbits (au)

max { intbits (bq), intbits (Cq)}. In the second case, by Lemma 6.1.1 i), intbits (a,) - 1 +q

max { intbits (bq), intbits (Cq).q

b) If Pm executes r (i)--r () T r (k), then p is the sum of rconm (k) and the position

of an interesting bit of rconm (j). By Lemma 6.1.1, intbits (a,) 5 max { intbits (bq)) +q

intbirs (rconm (k)). By a similar argument, the claim holds for right shift.

c) If Pm executes r (i-)+-r (j) V r (k), then p is the position of an interesting bit in

either rconn (j) or rcon. (k). Thus, intbits (a,) < max { intbits (bq), intbits (Cq) }. Otherq

Boolean operations produce the same results.

d) If Pn executes r (i)--r (j) - r (k), then the claim holds by Parts i)a) and i)c).

ii) For any instruction, we add at most I to the value of a subtree of level f > 1; hence,

Part i)a) applies. 0

Lemma 6.1.3. A pointer can be specified in 0 (T 2 (n)) space on a TM.

Proof. Let d be an integer generated by a PRAM[1I,,I. By Lemma 6. 1. 1,

depth (d) < 2T (n). If (o is the input to the PRAM[IT,,] and o has length n, then

intbits (co) _< n. Let E(3) be either E(d) or a subtree of E(d). By Lemmas 6.1.1 and 6.1.2,

intbits (1) _ n 2 T(n) . Therefore, any leaf in E(d) can be specified by a pointer of length

0 (T(n) + log n) = 0 (T(n)). (The tree has 2T(n) levels, and we need space 0 (T(n)) to

specify the branch at each level.) 0

We describe here an efficient simulation of a PRAM[t, ,1 by a basic PRAM. Let S be

a PRAM[qt,,] that uses T(n) time and P (n) processors. Let S' be a PRAM[T,,] that uses

only short addresses and simulates S according to the Associative Memory Lemma. Thus, S'

uses 0 (P2 (n)T(n)) processors, 0 (T(n)) time, and only addresses in 0, 1, ..., 0 (P (n)T(n)).

Let q be a constant such that each processor in S' uses only q registers.

For numbers generated by S (and therefore S'), the depth of the encoding is at most

2T (n), and every internal node has at most n 2 T(n) children. Therefore, the encoding may

have up to 4 T2(n) nodes.

We construct a PRAM Z that simulates S via S' in 0 (T 2(n)) time, using

O (P 2(n) T (n) 4 T2(n)) processors. For ease of description, we allow Z to have q +7 separate

shared memories, memo, ..., memq+6, which can be interleaved. This entails no loss of

generality and only a constant factor time loss (Lemma 3.1).

Initialization. Z partitions memo into 0 (P (n)T (n)) blocks of 4T2<n) cells each, This

partitioning allots one block per cell accessed by S', where each block comprises one cell per

node of the encoding tree. Z partitions each of mer1 ... memq into 0 (p 2(n)T(n)) blocks.

This allots one block per processor of S' and one memory per local register used by a

I

52

processor. (See Figure 6.2.) Let Bi(m) denote the mth block of mem. Throughout the

simulation, Bo(j) contains E(con (j)), and Bi(m), I < i < q, contains E(rconm(i)) of S'.

Z activates 0 (p 2 (n) T(n)) primary processors, one for each processor used by S'. In

memq+1, these processors construct an address table. The jth entry of this table is j4T 2(
,
)

the address of the first cell of the jth block in every memory. The maximum address is

0 (P (n)T(n)4T'(n)), so this address (and the entire table) is computed in 0 (T 2 (n)) time.

Each primary processor now deploys 4 T 2(n) secondary processors, one for each cell in a

block, in 0 (T2 (n)) time. To implement a broadcast in constant time, each primary processor

Pn uses cq+2(m) as a communication cell. When the secondary processors are not otherwise

occupied, they concurrently read this cell at each time step, waiting for a signal from the

primary processor to indicate their next tasks.

Consider a complete d-ary tree A with depth 2T (n). We number the nodes of A,

starting with the root as node 1, in the order of a right-to-left breadth-first traversal. Node

number j has children numbered dj-(d-2), ..., dj, dj+1; its parent is numbered

L (+(d-2)) dj .

memo shared memory
mem 1, ..., memq local memories
memq+1 address table
memq +2 communication
memq+3 rightmost child
memq+4 parent
memq+5 rightmost sibling
memq+6 two's complement representation

of cell contents

Figure 6.2. Shared memories of Z

53

We view a block as a linear array storing A with d = 4 T(n) . Node numbers correspond

to locations in the array. Let node (j) denote the node whose number is j. Let num (a)

denote the node number of node a. Let p (a) denote the parent of node a; let rc (a) denote

the rightmost child of node c. For each primary processor, the jth secondary processor,

1 - j < 4 T2(n), handles node (j). Let proc (ax) denote the secondary processor assigned to

node a.

Each encoding is a subtree of A because some encoding nodes may have fewer than

4 T(n) children. Let Ic (a) denote the leftmost nonempty child of node a. When a primary

processor and its secondary processors update E(con (i)) or E(rcong(i)), they also update

num (Ic (a)) for every node a. Let right (a) denote num (a) - num (rc (p (a))). That is,

right (ax) denotes which child a is of p (a), counting from the right. Similarly, let left (a)

denote num (a) - num (/c (p (a))). That is, left (a) denotes which child a is of p (a), counting

from the left.

Using memq+2 for communication with primary processor Ph, corresponding to

processor P 0 of S', proc (node (j)), 1 j < 4 2 (n), computes num (rc (node (j))) in O (T (n))

time aid ',viwte i i;,,.q.,3(J) Next, proc (node (j)) determines num(p (node (j))) and writes

this number in memq.4. It writes j in Cq.4(num (rc (node (j)))). Note that jis

num (p (rc (node (j)))). On the kth cycle, each secondary processor that has

num (p (node (j))) (that is, conq+4(j) 0) writes that number 2 k cells away (in

memq+4 (j+2k)), if that cell is empty. After Z repeats this procedure T(n)-l times, COnq+4(j)

=num (p (node (j))), for all j. In this procedure, the processors also write

num (rc (p (node (j)))) in memq+5 (j). Then the processor for each node j can compute

right (j).

I

S4

All the addresses of cells accessed by S' can be constructed using only addition and

subtraction. In order to quickly perform indirect addressing, Z generates all cell and register

contents in standard two's complement representation, except for results of shifts. If the

value v in a register or a shared memory cell is the result of a shift, then S" will not use v as

an address, and S' will use no other value computed from v as an address.

Recall that register addresses are in the range 0, , q -1. The two's complement

representation of local register rg (i) of S', if rcong(i) is constructed without shifts, is stored

in cq+6(g (q+l) + i). The two's complement representation of shared memory cell c (j) of

S', if con (j) is constructed without shifts, is stored in cq+6((j+l)(q+l)).

As the final initialization step, Z converts the input to the M1B encoding, writing the

encoding into B 0 (0). Z writes the input integer in cq(q+l).

Simulation. In a general step of processor P9 of S', P8 executes instruction instr.

Assume for now that instr has the form r(i) <- r(j) 0 r(k). To simulate this step, the

corresponding primary processor P, of Z and its secondary processors perform four tasks:

Task 1. If 0 is not a shift, then perform 0 on conq+6(g (q+1) + j) and

COnq+6(g (q+l) + k), writing the result in conq+6(g (q+l) + i).

Task 2. Merge the first level of the encodings E(rcong(j)) and E(rcong(k)).

Task 3. Determine where the interesting bits of E(rcong(i)) occur in the merged

encodings and compute their marks.

Task 4. Compress these marked interesting bits into the proper structure.

Z uses the procedures MERGE in Task 2 and COMPRESS in Task 4. Depending on the

operation 0, Z may also use the procedures BOOL and ADD in Task 3. These procedures

are described below.

55

Procedures MERGE, COMPRESS, BOOL, and ADD call procedure COMPARE, which

we now specify. Let j and k be nonnegative integers, and let Nh and W2 be encoding

pointers. If m = X, the empty string, then COMPARE (j, W1, k, V2, m) compares the value

of subtree E(con (j))-4t with the value of subtree E(con (k)).W2 . COMPARE returns

"equal" if val(E(con (j)).Wl) = val(E(con (k)).V 2), "greater" if val(E(con (J)).Wt) >

val(E(con (k)).xV2), or "less" if val(E(con (J)).V) < val(E(con (k)).4t2). Similarly, if m * .,

then COMPARE compares the value of subtree E(rconm(j)).t 1 with the value of subtree

E(rconm (k)).xV2 . COMPARE returns "equal" if val(E(rconm(j)).4i) = val(E(rconm(k)).W2),

"greater" if val(E(rconm(j)).Wl) > val(E(rconm(k)).xV2), or "less" if val(E(rconm(j)).xVl) <

val(E(rconm(k)).4f2).

Suppose m = .; the case m * . is similar. For each node a in the first level of

E(con (j)).{i1 simultaneously, proc (a) determines left (a). Then proc (a) computes num(3)

such that node 0 is in the first level of E(con (k)).-N2 and left (0) = left (a)_by reading

num (Ic (E(con (k)).1 2)). Next, proc (a) recursively compares the values of the subtrees

rooted at or and 3. If the interesting bit whose location is specified by val (a) is the end of a

constant interval of l's (O's), then proc (a) writes in the num (a)th cell in Bq+2(g) which

subtree has the greater (lesser) value, but writes nothing if the subtrees have equal value. By

the concurrent write rules, the num (a)th cell in Bq+2(g) either holds the name of the cell (i

or k) whose subtree has greater value or holds nothing if they are equal.

Computing these node numbers takes constant time. COMPARE is recursive in the

depth of the encoding, taking constant time at each level. Consequently,

COMPARE (j, xVj, k, W2, m) takes O(T(n)) time.

56

In Task 2, Z merges the first level of the encodings E(rcong(j)) and E(rcong(k)). Z does

this to compare the positions of interesting bits in rcong(j) and rcong(k). This comparison is

necessary to determine the positions of the interesting bits in rcong(i).

The subtrees rooted at the first level of E(d) form a list sorted in increasing order by

their values. The beginning of the list corresponds to the rightmost child of the root.

MERGE (j, k, i) returns, in Bi(g), the list resulting from merging the first levels of

E(rcon8(j)) and E(rcong(k)). The list contains up to 0 (2 T(,)) subtrees, each of which is a

subtree of E(rcong(j)) or E(rcong(k)). Each subtree in the merged list retains indications of

whether it is from j or k, whether it is the end of a constant interval of O's or l's, and its

(singleton) mark.

In parallel, Z compares val (a), for each subtree rooted at a in the first levei of

E(rcong(j)), with val (13), for each subtree rooted at 13 in the first level of E(rcong(k)). If

val (cx) > val (13), then proc (a) writes right (13) into the num (a)th cell of Bq+2(g). By the

concurrent write rules, this cell contains the largest right (13) for which val (a) > val (13). Call

this value max (13). For each a, right (a) + max (13) specifies the position of the subtree rooted

at a in the merged list. Next, for each 13, if val (13) -val (a), then proc (13) writes right (a)

into the num (13)th cell of Bq+2 (g). Call this value max (a). For each 13, right (13) + max (a)

specifies the position of the subtree rooted at 13 in the merged list. A comparison takes

O (T (n)) time, so Z performs a MERGE in 0 (T (n)) time. (Note: Each subtree in the

merged list also indicates whether its value is equal to that of the succeeding subtree in the

list.)

We introduce one more procedure before describing the computation of the interesting

bits of rcong(i). Let I(d) denote the MIB encoding of d without the marks.

57

PLUSONE (k, iV, i, xV2) writes I(val(E(rcons(k)).Wjf) + 1) in the location set aside for

subtree Xz in Bi(g). That is, given E(d), for d an integer, PLUSONE writes I(d+l).

PLUSONE does not write singleton marks. Z uses PLUS_ONE to generate I(d +1) to test

for equality with E(x), x an integer. The processors ignore marks to interpret E(x) as I(x).

At most, the two rightmost interesting bits of d+l will be different from those of d. We have

four cases to consider:

(a) d starts with a 0, the 0 is a singleton,

(b) d starts with a 0, the 0 is not a singleton,

(c) d starts with a 1, the first 0 is a singleton, and

(d) d starts with a 1, the first 0 is not a singleton.

In every case, Z complements the start bit. In case (a), Z deletes the first interesting bit in

E(d). In case (b), Z adds a new interesting bit at location 0. In case (c), Z deletes the second

interesting bit. In case (d), let us suppose the first interesting bit is at location f. Z deletes

this interesting bit and creates a new interesting bit at location f +1 by recursively calling

PLUSONE. (Naturally, when Z adds or deletes one interesting bit, it shifts the subtrees

encoding the locations of the other interesting bits one position left or right, as necessary. In

a block, the associated processors copy their respective subtrees in constant time.)

PLUSONE is recursive with depth T(n), the depth of the encodings. PLUSONE uses

constant time at each level, so 0 (T(n)) time overall.

We now are ready to describe how Z accomplishes Task 3. Assume without loss of

generality that i, j, and k are different. Z's actions in Task 3 depend on the operation 0 in

instr. Define an interval-pair to be the intersection of a constant interval in rcong(j) and a

!
I
I

58

constant interval in rcong(k). For example, three interval-pairs, denoted a, b, and c, are

shown below.

ccbbba

rcong (j) 1 10001

rcong(k) 001 1 1 1

The interval-pair length of interval-pair a is 1, of interval-pair b is 3, and of interval-pair c is

2.

ZEROONE (j, k, i) takes as input the merged list from E(rcong(j)) and E(rcong(k)) in

Bi(g) and returns as output an indication for each subtree in the list from E(rcong(j))

(respectively, E(rcong(k))) whether rcong(k) (respectively, rcong(j)) is in a constant interval

of 0's or l's at the location specified by the value of the subtree. The secondary processors

handling the merged list act as a binary computation tree to pass along the desired

information in O (T (n)) time.

IPLENGTH (j, k, i) takes as input the merged list from E(rcong(j)) and E(rcong(k))

in B,(g) and returns as output an indication for each subtree in the list whether the interval

pair ending at the location specified by the value of the subtree has length 1 or greater than 1.

To perform this computation, Z calls PLUSONE (i, yj, i', I) in parallel for each subtree

in the list, where , is the location of the subtree in the list and i refers to B.+2 (i). Suppose

the subtree encodes the integer d. Then, in parallel, Z tests I(d+l) for equality with the

succeeding subtree in the list. If they have equal value, then the interval-pair length is 1;

otherwise, the interval-pair length is greater than 1.

If instr is r (i)(--r (j) V r (k), then Z calls BOOL (j, k, i, V). BOOL (j, k, i, V) writes

E(rcong(j) V rcong(k)) in Bi(g). Assume that we have the merged encodings of E(rcong(j))

and E(rcong(k)) in Bi(g). Z must compute the interesting bits and their marks. Z performs

59

two preliminary steps:

(1) for each subtree in the list from E(rcon, (j)) (respectively, E(rcong(k)))

determine whether rcong(k) (respectively, rcong (j)) is in a constant interval of O's

or I's at the location specified by the value of the subtree and

(2) determine whether the interval-pair length is 1.

Z calls ZEROONE (j, k, i) and IP LENGTH (j, k, i) to perform (1) and (2), respectively.

A subtree is interesting if its value is the location of an interesting bit of rcong(i); otherwise,

the subtree is boring. Following the rules in Appendix A, the processors associated with

each subtree tag it as "interesting" or "boring." It remains for Z to compute the marks of

the interesting bits. For each interesting subtree, the processor associated with the root

determines the following. If the interval-pair has length I and the preceding subtree in the

list is a nonblank, then mark it s; otherwise, mark it m. The entire procedure takes time

0 (T (n)). Other Boolean instructions are handled similarly.

If instr is r (i)*--r (j) + r (k), then Z calls ADD (j, X, k, X, i, X).

ADD (j, W1, k, W'2, i, W43) writes E(val(E(rcong(j)).WjI) + val(E(rcong(k)).XV 2)) in the

location set aside for subtree W43 in Bi(g). Again, assume that we have the list of merged first

level subtrees of E(rcong(j)) and E(rcong(k)) in Bi(g). To accomplish Task 3, Z must test

four conditions at the bit location specified by the value of the subtree:

(a) whether the rcong(j) and rcong(k) pairs are both in constant intervals of O's,

both in I's, or one in O's and one in l's,

(b) whether there is a carry-in to the interval-pair,

(c) whether rcon,(i) is in a constant interval of O's or I's prior to the start of the

interval-pair, and

I

60

(d) whether the interval-pair length is 1 or greater than 1.

Z calls ZEROONE and IPLENGTH to test conditions (a) and (d) in time 0 (T (n)). For

each subtree cx in the list, proc (cc) does the following. To test condition (b), proc (c) tests

condition (a) at the preceding subtree in the list. If both rcong (j) and rcong(k) are in 0's,

then there is no carry-in; if both are in l's, then there is a carry-in. If one is in O's and the

other is in I's, then the carry-in depends on the carry-in to the preceding interval-pair. To

propagate this information in time 0 (T(n)), processors again act as a binary computation

tree. To test condition (c), proc (cx) determines whether rcong(i) is in a constant interval of

O's or I's at position val ((x) using the other three conditions, then passes this information to

proc (num (cx)+l). The processors act as a binary computation tree of height 0 (T(n)) in

testing all four conditions. Thus, all four conditions can be tested in 0 (T(n)) time.

Following the rules in Appendix B, for each subtree cx in the list, proc ((x) determines

whether subtree (x encodes the position of an interesting bit of rcong(i). In doing so, proc (c)

may call the procedure PLUSONE. This leads to an overall time of 0 (T(n)) to perform an

addition.

If instr is r(i)--r(j) - r(k), then Z computes E(rcong(j)+l) in Bi(g) by a call to ADD,

then calls ADD (i, X, k', X, i, X), where k' indicates that the start bit of E(rcong(k)) is

complemented (thus adding rcong(j) and the two's complement of rcong(k)). This takes

O (T (n)) time.

If rcong(k) < 0 and instr is r (i)<--r (j) T r (k), then Z treats instr as r (i)--r (j) I r (k),

substituting I rcon8 (k) I for rcong(k). Similarly, if rcong(k) < 0 and instr is

r ()---r(j) I r(k), then Z treats instr as r ()+--r(j) T r(k), substituting I rcong(k) I for

rcong(k), Thus, for both shift instructions, we shall assume rcong(k) > 0.

61

If instr is r (i)--r (j) T r (k), then the dth interesting bit of rcong (i) is in the position

specified by the sum of rcong(k) and the position of the dth (if the least significant bit of

rcong(j) is 0) or d+lst (if the least significant bit of rcon8 (j) is I and rcon8 (k) * 0)

interesting bit of rcon, (j). Z adds rcong (k) to the value of each subtree from rcong ().

Marks stay the same, except perhaps for the first interesting bit of rcong (j): if it has mark s

and rcong(k) = 0, then Z marks it s; otherwise, Z marks it m. This procedure takes 0 (T(n))

time, the time to perform ADD.

If instr is r (i)+-r (j) I r (k), then Z subtracts rcong (k) from the value of each first level

subtree of rcong(j). Z tags as boring those subtrees for which this difference is negative. For

the others, this difference is the location of an interesting bit in rcong(i). Let ydenote the

subtree whose value specifies the location of the first interesting bit in rcong(i). Marks stay

the same, except perhaps for y- if val(y) = 0, then Z marks it s; otherwise, Z marks it m. The

start bit of rcong(i) depends on whether rcong(j) is in a constant interval of O's or l's at the

location specified by the subtree that became y. This procedure takes time 0 (T(n)), the time

to perform ADD.

Z accomplishes Task 4 by calling COMPRESS. COMPRESS (i) takes the contents of

block i, which implicitly stores a tree in which some subtrees rooted at the first level are

tagged to be deleted (boring), and rewrites the tree without the boring subtrees. The
t

secondary processors act as a binary computation tree so that the processors associated with

'4 the root of each interesting (that is, not boring) first level subtree can determine the number

of interesting subtrees to the right in time 0 (T(n)). This number specifies the location of the

subtree in the compressed tree. Then Z copies each subtree into the appropriate location and

writes zeroes in the unused locations. Overall, COMPRESS (i) takes O (T(n)) time.

62

Now let us consider instructions instr executed by processor Pg of S' where instr has a

form other than r(i) - r(j) 0 r(k).

If instr is r (i) *- c (r (j)), then Pm reads y = conq +6 (g (q + 1) + j), the two's complement

representation of rcong(j). Pm and its secondary processors then copy B 0 (y) into Bj(g). Pm

also writes conq+6((y+l)(q+l)) in cq+6(g (q+l) + j). We handle instruction instr of the

form r(i) -- r(r(j)) similarly.

If instr is c (r (i)) +- r(j), then Pm reads y = COnq+6(g (q-+4I) + i), the two's complement

representation of rcong(i). Pn and its secondary processors then copy Bj(g) into B 0 (/). Pn

also writes conq+6(g (q+l) + j) in cq+6((y+l)(q+l)). We handle instruction instr of the

form r(r(i)) *-- r(j) similarly.

If processors Pf and Pg of S' wish to simultaneously write c (j), then the corresponding

processors P1 and Pn of Z will simultaneously attempt to write BO(j). If f< g, then I < m,

and all secondary processors of P are numbered less than all secondary processors of P,.

Thus, in S', Pf succeeds in its write, and in Z, P, and its secondary processors succeed in

their writes.

At most 4 T2 (n) processors simultaneously read or write a cell in the simulation

described above. Note that simultaneous reads and writes occur in two ways: (a) 0 (4 T
1 In))

processors simultaneously read or write a cell at one step of an 0 (T (n)) step procedure, and

(b) 0 (2T(n)) processors simultaneously read or write at each step of an 0 (T (n)) step

procedure. As a result, if we wish to restrict the number of simultaneous reads and writes,

we can revise the simulation with no time loss such that all simultaneous reads and writes of

form (a) are modified to form (b).

a. -_

63I
Theorem 6.1. For all T (n) - log n, PRAM [T,4-I-TIME (T (n)) Q PRAM -TIME (T2 (n)).

Proof. In the simulation given above, Z takes 0 (T(n)) time per step of S' to merge two

encodings, compute new marked interesting bits, and compress the list into the proper MIB

form. S' simulates S in 0 (T(n)) time. Hence, Z takes 0 (T2(n)) time to simulate S via S'.

Corollary 6.1.1. PRAM [T,.I]-POLYLOGTIME = PRAM-POLYLOGTIME.

6.2. Simulations of PRAM[T,,] by Circuits and Turing Machine

We now describe simulations of a PRAM[T,1- by a log-space uniform family of

unbounded fan-in circuits, a log-space uniform family of bounded fan-in circuits, and a

Turing machine.

Lemma 6.2.1. For each n, every language recognized by a PRAM[T,1] S in time T(n) with

P (n) processors can be recognized by a log-space uniform unbounded fan-in circuit C,, of

depth 0 (T 2 (n)) and size 0 (P 4 (n)T 4 (n)16T2(n)).

Proof. Let Z be the PRAM described in Theorem 6.1, simulating S in O (T2(n)) time with

0 (P 2 (n)T(n)4T(n)) processors. Fix an input length n. We construct an unbounded fan-in

circuit C, that simulates Z by the construction given by Theoren 2.1. iLi

Lemma 6.2.2. For each n, every language recognized by a PRAM[T,$] S in time T(n) with

P (n) processors can be recognized by a log-space uniform unbounded fan-in circuit UC,, of

depth 0 (T 2(n)), size 0 (P4 (n)T4 (n)162(,)), and maximum fan-in 0 (4T(n)T 2 (n)).

Proof. Fix an input length n. We construct UCn from C,, of Lemma 6.2.1. We reduce the

fan-in in the portions of the circuit that simulate updates in the shared memory of Z. The

I

64

circuit described in Theorem 2.1 allows all processors to attempt to simultaneously write the

same cell. This does not occur in Z. During the execution of each procedure of Z, either

4T2 (n) secondary processors concurrently write the same cell once or 4T (,) secondary

processors concurrently write the same cell at each of 0 (T (n)) leveis of recursion. Thus, we

can modify Z such that at most 4 T(,) processors attempt to write the same cell at each time

step, keeping the time for each procedure at 0 (T(n)). By the construction given in Theorem

2.1, this leads to a maximum fan-in for any gate in UC,, of 0 (4T(,) T2 (n)) if T (n) ! n or

0 (4T(n)T (n)n) if T (n) < n. The circuit remains uniform after modifications to Z because

the processors concurrently writing are all secondary processors belonging to the same

primary processor. UC, has depth 0 (T2(n)) and size

0(p2(n)T4(n)4T2 (n)(T(n) + p2(n)4 T'(n))) = 0 (P 4 (n)T4(n)16T2(n)). 0

Lemma 6.2.3. For each n, every language recognized by a PRAM[T,,-] S in time T(n) with

P (n) processors can be recognized by a log-space uniform bounded fan-in circuit BCn of

depth 0 (T 3(n)) and size 0 (P4(n)T4(n)16T2(n)),

Proof. Fix an input length n. Let UCn be the unbounded fan-in circuit described in Lemma

6.2,2 that simulates S. The gates of UC, have maximum fan-in of 0 (2T(n)T 2 (n)) if

T(n) ! n or 0 (2T(n)T(n)n) if T(n) < n. We construct the bounded fan-in circuit BC, by

replacing each gate of UC, with fan-in f by a tree of gates of depth log f. Since every

f= 0 (2T(n)(T 2 (n) + nT(n)), and T(n) _ log n, BC, can simulate each gate of UC, in depth

0 (T(n)). Since UCn has depth 0 ((T 2(n)) by Lemma 6.2.2, BCn has depth 0 (T 3(n)). 0

Theorem 6.2. For all T(n) ! log n, PRAM[T,I]-TIME(T(n)) DSPACE(T 3 (n)).

Proof. Theorem 6.2 follows from Lemma 6.2.3 and Borodin's (1977) result that a bounded

fan-in circuit of depth D (n) can be simulated in space 0 (D (n)) on a Turing machine. C

65

Theorem 6.2 and a fundamental result of Fortune and Wyllie (1978)

DSPACE (T (n)) Q PRAM-TIME (T (n)) for all T (n) >_ log n

together imply that PRAM [1, -TIME (T(n)) g PRAM -TIME (T 3 (n)). The direct

simulation of Theorem 6.1 is more efficient.

Theorem 6.1 and the other fundamental result of Fortune and Wyllie

PRAM-TIME (T (n)) c DSPACE (T 2 (n)) for all T (n) -log n

together imply that PRAM [T,1-TIME (T(n)) cDSPACE(T4 (n)). The O(T 3 (n)) space

simulation of Theorem 6.2 is more efficient.

Corollary 6.2.1. PRAM fT,1-PTIME = PSPACE.

6.3. Direct Simulation of PRAM['T] by Turing Machine

In the previous section, we indirectly simulated a PRAM(",J1 by a Turing machine.

Here, we present a direct simulation that achieves the same space bound.

We use the interesting bit (IB) encoding of Simon (1977). Let d be an integer, and let w

= len (d). Let b,_1•• bo be the w-bit two's complement representation of d. We define the

interesting bit encoding as

I(0) = 0,

1(01) = 1,

I(d) = (I(ak), ... I(a 2), I(a); r),

where d is an integer, aj is the position of the jth interesting bit of d, and r is the value (0 or

1) of the rightmost bit of d.

For example, I(01100) = (1(011), 1(01); 0) = ((1(01); 1), 1; 0) = ((1; 1), 1; 0). For all d, define

val(I(d)) = d and va(1(d)) = d, that is, vat returns the complement of the two's complement

66

representation of d. Observe that the T3 encoding is simply the MIB encoding without the

marks.

We simulate a PRAM[T,,] S running in time T(n) by a TM running in space

polynomial in T(n) by writing only pointers into the encodings of cell contents. This

manipulation of pointers to individual symbols in the encoding is similar to the manipulation

of individual bits in the simulation of a PRAM[*] by a TM in Section 4.3. During the

computation of S on any input of length n, for every c (j), the length of I(ron (j)) is at most

exponential in T 2(n), and pointers have length at most T 2(n) (Lemma 6.1.3). We invoke the

Associative Memory Lemma to construct a PRAM[T,,1] S' that simulates S using only short

addresses.

Simulation. We now describe the simulation of a time-bounded PRAM[T,,] by a

space-bounded TM. Let S be a PRAM[T,$] that uses T(n) time and P (n) processors. Let S'

be a PRAM[T,L] that uses only short addresses and simulates S according to the Associative

Memory Lemma. Thus, S' uses O (P 2(n)T(n)) processors, O (T(n)) time, and only

addresses in 0, 1, ..., 0 (P (n)T(n)),

We construct a TM M that simulates S via S' in T 3(n) space. M uses four mutually

recursive procedures: PCOUNTER, COMPARE, SYMBOL, and ADD. In the following, at

(and 3) may have any of the following forms: (i) #d, where d is a constant, (ii) j, where j is a

register address and I(ct') is I(rconmn(j)), (iii) j. 0, where 0 is a pointer and I(ac') is

I(rconm(j)).O, (iv) 1 + j.0, where I(cx') is I(1 + val(I(rconm(j)).O)), or (v) I + j.0, where I(cc')

is I(1 + val (I(rcon,(j)).0)). During the simulation, every #d, j, and j.0 parameter can be

written in O (T 2(n)) space.

67

PCOUNTER (m, t) returns the contents of the program counter of P,, at time t. To

determine whether S' accepts input co, M executes PCOUNTER to check whether P 0 halts

with its program counter on an ACCEPT instruction by time 0 (T(n)). Let p be the value

returned by PCOUNTER (m,). PCOUNTER (m, t) depends on r, the value returned by

PCOUNTER (m, t-l). If r indicates that P. was not active at time t -1, then PCOUNTER

determines whether PLm/21 activated Pm at time r-1 with a FORK instruction by calling

PCOUNTER (Lm /2J , t-1). If PL./2J executed FORK label 1, label2, then if m is even,

p = label 1; otherwise, p = label2. If PLm/2j did not execute FORK, then Pm is inactive at

time t. If r indicates that P,. is active at time t-I and step r is not a CJUMP, REJECT, or

ACCEPT instruction, then p = r+1. If step r is CJUMP r(i) comp r(j), label3, where comp

is an integer comparison, then PCOUNTER repeatedly calls VALUE for time t-l to compare

rcon,(i) and rconm(j). If the comparison is true, then p = label 3; otherwise, p = r+l. If

instruction r is an ACCEPT (REJECT), then p = r.

In the following procedures, if m = X, then interpret 0t and 3 as referring to shared

memory cells; if m * X, then interpret a and 03 as referring to registers of Pm. We describe

the case m .

COMPARE (c1,W1, ,2, m, t) compares the value of subtree I(a').xv at time t (of the

computation of S') with the value of subtree I(l').4f2 at time t. COMPARE returns "equal" if

val(I(d').N) = val(I(PN").' 2), "greater" if val(I(a').iyj) > val(I(3').-W2), or "less" if

val(I(a').xl) < val(I(P').'42). COMPARE recursively compares the subtrees of I(oa).x11 and

I({').4i2 from right to left. COMPARE calls SYMBOL to determine whether the elements

considered are subtrees or leaves, and, if they are leaves, to determine the symbol at the leaf.

The interested reader is referred to Appendix C for the details of COMPARE.

U
U

68

SYMBOL (a, N', m, t) returns the symbol I(a').N' if V points to a leaf of I(ax');

otherwise, SYMBOL returns a signal that W points to a subtree of I(cx').

Assume ax has the form i. SYMBOL calls PCOUNTER to determine whether P. wrote

register rm(i) at time t-l. If Pm did not write r,(i), then SYMBOL returns

SYMBOL (i, W, m, t -1). Otherwise, suppose Pm executed an instruction instr that wrote

rm(i) at time t-l.

If instr was r (i)(--d, then this is a base case. If 4' points to a leaf of the encoding of the

constant d, then SYMBOL returns I (d).N ; otherwise, SYMBOL returns a signal that W' points

to a subtree.

If instr was r(i)--r(j), then SYMBOL returns SYMBOL(j, N', m, t-l). If t = 0, then

SYMBOL (i, xV, m, t) is a base case. M can determine I(rconm(i)).4' because rconm(O) at

time 0 is m; all other registers contain 0, and M has space to write the processor number in

encoded form. (Note: If m = X, then t = 0 is again a base case. At time 0, con(O) is the

input, all other cells contain 0, and M has space to write the input in encoded form.)

For Boolean operations, SYMBOL is straightforward. See Appendix D for details.

If instr was r (i)---r (j) + r (k), then SYMBOL returns ADD (j, k, W, m, t-1), which

returns I(rcon,(j) + rconm(k)).xV.

If instr was r (i)--r(j) - r(k), then SYMBOL returns ADD (j, l+k, Wt, m, t-l). Recall

that 1 + rconm(k) is the two's complement of rconm(k).

If rconm (k) < 0 and instr was r (i)--r (j) T r (k), then M treats instr as

r (i)--r (j) . r (k), substituting I rconm(k) I for rconm(k). Similarly, if rconm (k) < 0 and instr

was r(i)--r(j) I. r(k), then M treats instr as r(i)--r(j) T r(k), substituting Irconm(k) I for

rconm(k). Thus, for both shift instructions, we shall assume rcong(k) >_ 0.

69

If instr was r (i)-r(j) T r (k), then the vth interesting bit of rcon,,(i) will be in the

position specified by the sum of rconm(k) and the position of the vth (if the rightmost bit of

rconm(j) is 0) or v+lst (if the rightmost bit of rconm(j) is 1) interesting bit of rconm(j). For

t=x0-xl. • •-ix, letFIRST(,)=xo andREST(a=xI.2 ."'-X. SYMBOL returns either

ADD (j.FIRST(W), k, REST (Wt), m, t-1) or ADD (j. (FIRST (V)-I), k, REST (xt), m, t-l).

If instr was r (i)--r (j) ,I, r (k), then if rconm(k) is greater than the position of the

leftmost interesting bit of rconm(j), then SYMBOL returns 0; otherwise, the ith interesting bit

of rconm.(i) will be the ith interesting bit of rconm(j) such that the difference between the

value of its position and rcon,(k) is nonnegative. The interesting bit of rconm,(i) will be in

the position specified by the difference between the value of the position of this interesting

bit of rconm(ij) and rcon..(k). SYMBOL calls ADD to find this information.

If instr used an indirect address, say c (r (j)), then M uses SYMBOL to get I(rcon,(j))

one symbol at a time. Next, M decodes I(rcon,(j)) to get rconm(j). Since all addresses used

by S' are 0 (T(n)) long, M has space to write rconm(j). Now SYMBOL can directly access

the desired cell. If the indirect address was r (r (g)), then M reads rconm (g) one symbol at a

time. Since each processor in S' uses only a constant number of registers, len (rcon,(g)) is a

constant, and M has space to write the address.

ADD (a, 03, V, m, t) returns the symbol to which Nf points in I(val(I(a')) + val(I(3'))) if

W points to a leaf in the encoding of the sum; otherwise, ADD returns a signal that XV points

to a subtree of the encoding of the sum. ADD computes subtrees of I(val(I(a')) + val(I(P')))

from right to left and based on cases depending on whether val(I(a')) and val(I(')) are in

constant intervals of O's or I's and on the carry from the previous bit position. Note that this

procedure also works when 3 is of the form l+k. See Appendix E for details.

I

70

Theorem 6.3. For all T(n) > log n, PRAM[t,I-TIME(T(n)) CDSPACE(T3 (n)).

Proof. The simulation given above simulates a PRAM[TI S by a TM M.

For each invocation of PCOUNTER, COMPARE, SYMBOL, and ADD, M can write all

variables and parameters in space 0 (log P (n)T(n)), 0 (T2(n)), 0 (T 2(n)), and 0 (T 2 (n)),

respectively. The depth of recursion of these procedures is at most 0 (T (n)), Since

P (n) <_ 2T(n), M uses space O (T 3 (n)) to simulate S. With linear space compression, M uses

space T3(n). El

71

Chapter 7. Multiplication and Shift

We study the interaction of multiplication and shift instructions in this chapter.

Combined, they can produce very long and complex numbers. The product of two integers

with b and b' interesting bits can have bb' interesting bits. Thus with s interleaved shift and

multiplication operations, a PRAM[*,T] can build numbers with 220 1 interesting bits.

Let NEXPTIME be the class of languages accepted by a nondeterministic Turing

machine in time 0 (cPOIY n)), where c is a constant and poly (n) is a polynomial in n; let

EXPSPACE be the class of languages accepted by a Turing machine in space 0 (cPolY n)), c

a constant. In Section 7.1, we prove NEXPTIME PRAM [*, T]-PTIME, and in Section 7.2,

we prove PRAM [*, T, I,]-PTIME Z EXPSPACE. We have previously shown that

polynomial time on a PRAM[*] or a PRAM[T,,] is equal to PSPACE on a Turing machine.

Thus, a PRAM with both multiplication and shift instructions may be more powerful, to

within a polynomial in time, than a PRAM with either multiplication or shift alone, since it is

believed that NEXPTIME properly contains PSPACE.

7.1. Simulation of TM by PRAM[*,t]

We present here a simulation of a nondeterministic Turing machine (NTM) running in

exponential time by a PRAM[*,T] running in polynomial time. Our strengthening of the

simulation of a Turing machine from PSPACE to NEXPTIME relies on an interaction

between multiplication and shift operations. For an integer v, let #v denote its two's

complement representation; the number of bits in the two's complement representation will

be clear from the context. As previously noted, the shift operation is useful for making

copies of strings in a single cell. Multiplication can make copies much more quickly. If v is

72

an integer such that l's are spaced widely enough in #v, then multiplying an integer u by an

integer v produces an integer w such that #w contains a copy of #u for every 1 in #v.

We simulate a multitape NTM; the input initially appears on one of the tapes. A

configuration of an NTM Q comprises the contents of its tapes, the position of its tape heads,

and the state of its finite-state control. Let state (a) denote the state of Q in configuration a.

For two configurations a and T of Q, the relation a - holds if Q in configuration a may, in

one step, make a transition to configuration T according to its transition rules. A transition

from configuration a to configuration T is valid if a t- T holds. A computation of Q running

for T(n) steps is a sequence of T(n) + I configurations C = a 0a• a*tr,), where the ith

configuration, for all 0 < i _T(n), describes Q after the ith step, 3i - Gi,-, and a0 is the

initial configuration of Q with input cw. Computation C is accepting if state (aT(f,)) is an

accepting state.

A neighborhood in a configuration comprises the contents of two adjacent tape squares,

one of which a tape head is reading, the location of the tape head on one of the squares, and

the state of the TM. Let Nil(aY) (Nir(a)) denote the neighborhood in configuration a in which

the tape head of the ith tape is on the left (right) square. For a one-tape NTM, we simply use

N,(a) and Nr(a;).

We assume that every TM worktape is one-way infinite to the left. We make this

assumption in order to simplify the relationship between a TM configuration and an

encoding of that configuration built on a PRAM[*,I], since the PRAM[*,TI] builds numbers

that increase from left to right.

Let us outline the simulation. The simulating PRAM[*,I], MS, generates in a single

cell a description of all possible sequences of configurations by a time bounded NTM. MS

73

then tests each of these configuration sequences to determine whether at least one of them is

an accepting computation of the NTM on the given input. If so, then MS accepts the input;

otherwise, MS rejects. Multiplication and shift interact to quickly generate the description of

all possible computations.

* Oblivious motion

To test the validity of a possible computation, MS must be able to easily locate the tape

head in each configuration. For this reason, we have MS simulate an oblivious Turing

machine, where the head motion is regular and does not depend on the input or tape contents.

NEXPTIME can be characterized by oblivious simple NTMs working in exponeitial time.

Let Q be an NTM running in time T(n) with a constant number of worktapes, one

read-write head per tape, and with the input string w initially written on one worktape. Since

Q runs for T(n) steps, it uses at most T(n) space on each tape. We construct an oblivious

Turing machine Q' that simulates Q. The simulator Q' has a single worktape T(n) + 2

squares long, with a special endmarker at each end. Q' will be a sweeping NTM. Its head

moves one square at every step and does not change direction except at the endmarkers, so

the head motion is a sequence of one-way sweeps back and forth across the worktape. The

tape head of Q' halts to accept or reject the input only at one of the endmarkers. We

partition the set of states of Q' into two sets, R and L. R denotes the set of states 0 in which

the tape head moves right, unless the symbol being read is the right endmarker. L denotes

the set of states 0 in which the tape head moves left, unless the symbol being read is the left

endmarker.

4 Lemma 7.1.1. Q' simulates Q in O (T 2 (n)) time.

I

I

74

Proof. We describe the simulation of a general step of Q by Q'. We describe the simulation

for Q with a single worktape. To generalize the simulation to the case where Q has multiple

tapes, Q' uses multiple tracks, one per tape of Q, Suppose Q' is in a right sweep; that is, Q'

is in a state O"Q e R. The case where Q' is in a left sweep is handled similarly.

Suppose the simulated machine Q at this time is in state 0Q and that Q writes a symbol

s on the tape square currently being read, nondeterminisically selects a next state XQ, and

moves to the right. The simulating oblivious sweeping NTM Q' writes s, selects

corresponding next state XQ', and moves to the right. This completes the simulation of this

step of Q.

Suppose instead when Q is in state OQ that Q writes s, nondeterministically selects next

state VQ, and moves to the left. In this case, Q' writes symbol s as a marker for this

position on the tape, selects state YRQ. E R, and moves to the right. On successive steps, Q'

continues to sweep to the right in state xgRQ, without writing until it reaches the right

endmarker. Q' then enters state w.Q, e L and begins a left sweep. Q' sweeps left in state

W4LQ without writing until it reads symbol s * At this point, Q' writes symbol s, enters state

wv c L, and moves to the left, Now Q' is ready to simulate the next move of Q. This takes

0 (T(n)) steps.

If the tape head of Q remains stationary, then Q' simulates this step similarly to a left

head motion in 0 (T(n)) steps

Thus, Q' simulates each step of Q in O (T(n)) steps, and the entire computation of Q ir,

((Ti'(n)) steps [

We construct a PRAMI*,'T], MS, that simulates Q via Q' in O(log T(n o time,

75

* Construction of a description of all configuration sequences of Q"

Let d denote the number of bits needed to encode each symbol in the tape alphabet.

Let a be a configuration of a one-tape NTM. Let T1I be a bit string describing the contents of

the worktape in a with d bits per symbol from the right end to the square that the tape head

is reading (but not including the contents of that square); let T12 be a bit string describing the

contents of the worktape from the square that the tape is reading to the left end of the tape;

let 0 denote an encoding of state (Y). We encode a configuration a by an integer p. such that

#= T120t1.

Since Q' runs for 0 (T 2(n)) time on T(n) + 2 space, each configuration of Q' can be

described in 0 (T(n)) bits, and each computation of Q' can be described in 0 (T 3(n)) bits.

Let I,, denote the integer such that #I,, is the concatenation of all bit strings m bits long.

Specifically,

lI =m _ i "2i'm.

For an integer x, where #x = b b lb 0, for all 0 < i < Ly/m J, we call b (i +m1,,,-I • im, a

slot. For m = 0 (T 3(n)), MS will generate In as a list of all strings that can possibly

describe a computation of Q° on input ct). We view #Im as the concatenation of 2m slots,

each of which represents a sequence of configurations of Q'.

We defined In as the sum of 2- terms. We want MS to generate Im in 0 (log m) time.

lhvt.efore, we cannot simply activate a processor to build each term, then sum the terms

because this process takes 0 (m) time.

2"-

Let mask, 2m+j' that is, #mask, has a 1 in the j th bit position of each slot. Let

S) = lm A mask, that is, #S, and #I,,, are equal in the j th bit position of each slot, and #S, is

76

0 elsewhere. Recall that slot k of #I,,, contains #k, so the value of the jth position in slot k of

#S, is equal to the value of the jth bit position of #k.

rn-1

MS generates Im by building each S,, 0 : < m -1, then combining them: In V S].j=0

Let us now describe how MS constructs the Sj's. Although we have defined S, in terms of

In, we utilize an alternative definition to explain our construction of S,. Let b = 2 -/ 2 j+.

b_1 (2i +)m 21 + b1 1 " + an 2J+ 2J-1I
Let river = andbayou, = 2A. Thus, S, =

i -0 1----0 k _--0

river, bayou,. If we look only at the jth bit position of each slot of #fm (or equivalently,

#S), we find alternating sequences of 2J O's and 2J l's. Our second definition of S, reflects

this: we place a 1 in the jth position of each (2J +1)th slot (river,), then multiply by an

integer whose two's complement representation has 21 I's, appropriately spaced (bayouj).

To generate each river,, MS combines a set of values called streamk. We now define

streamk and tell how MS generates the streaMk's and how MS uses them to build the river, "s.

For all 0 < k < m - 1, streamk = 2
m 2k + 1 = [1 T (m-2k)] + 1; that is, #streamk has a I in the

rightmost position of slot 2 k and a I in the nghtmost position of slot 0. MS activates rn

processors, P, ... , P2m-,, in 0 (log m) steps. Processor Pm,+k, 1 < k < m-i, computes

streamk in constant time.

b-I ima2j

Next, we generate -river1 , a value one step from riveri, Define -river, = X2" • that

is, -river/ is river, shifted right so that the least significant 1 is in the 0th bit position:

river, = river, I- (m 2J + j). We build -river,, 05 j -< m -2, as the product of m - j -

rn-I
streamk's: -riverj = [-I streamk. We want to compute all -river 's in 0 (log n) time. This

k =j +1

is a parallel postfix computation, which MS can perform in time 0 (log m) with m processors

(Ladner and Fischer, 1980).

77

We now have -river, for 0 <j S m -2. The remaining item, -riverm 1, is simply 1.

Now for all 0 -< j m-i, we obtain river, from -riverj in constant time: river,

river, T (m 2J + j).

MS next computes the bayou 's. Each bayouj is the product of j easily computed

terms:

bayou = =: 2A' 2=m/2)2' + 1.
k--O s=1

This is a parallel prefix computation. Once again, MS computes al bayouj's simultaneously

in 0 (log m) time (Ladner and Fischer, 1980).

For all j, 0< j < m -1, processor P,,+j computes Sj = river,*bayou. MS now computes

rn-1

V S. in 0 (log m) time.

Since m = 0 (T 3 (n)), MS computes l3T(n) in 0 (log T(n)) time.

e Testing for a valid computation

We view IT3(n) as a list of all possible configuration sequences. Each sequence is

0 (T 2 (n)) configurations long, and each configuration is 0 (T(n)) bits long. Thus, I-3 (n) is a

list of all possible descriptions of a computation of the oblivious sweeping NTM Q' on the

input. MS must now test whether at least one of the configurati.- sequences in #IT3(n)

represents an accepting computation of Q'. MS will first build a set of bit masks to be used

in th,. :esting, then for each configuration sequence, MS will evaluate the following:

Test 1: whether the transition from each configuration to the next is valid,

Test 2: whether the first configuration corresponds to the initial configuration of

Q', and

78

Test 3: whether Q' is in an accepting state in the last configuration.

If all tests are true for a configuration sequence, then MS accepts; if for all configuration

sequences, at least one test fails, then MS rejects.

Recall that Q' runs for 0 (T 2(n)) steps on T(n) + 2 space, so a computation comprises

p = O (T 2(n)) configurations, where each configuration is f= O (T(n)) bits long. The tape

head of Q' sweeps back and forth between the endmarkers: the tape head makes T(n) + 1

moves from one endmarker to the next, then reverses direction. Hence, for

0 5 i <_p1(2T(n)+2) and 0 j 5 T(n), in configurations numbered i(2T(n)+2) + j, the head

is located one square to the left in the following configuration, and in configurations

numbered i (2T(n)+2) + T(n) + 1 + j, the head is located one square to the right in the

following configuration.

We interpret each slot of #Im as a representation of a configuration sequence of Q'.

Further, we view each slot of #Im as the concatenation of p notches, where each notch

represents a configuration of Q'. Let config (j) denote the contents of notch j interpreted as a

configuration. Let us call the notches that hold conkguratons from which the tape head is to

move right (left) right notches (left notches). For 0 <_ i < p /(2T (n)+2) and 0 < k < T (n), left

notches are numbered i (2T(n)+2) + k; right notches are numbered

i (2T(n)+2) + T(n) + 1 + k. (Right and left notches occur in alternating sequences of

T(n) + 1 notches.) A right (left) notch describes one configuration in a configuration

sequence during a right (left) sweep of Q'.

Recall that N1(a) (Nr(a)) denotes the neighborhood in configuration Y in which the tape

head is on the left (right) square. Given the contents of two adjacent notches that

79

represent configurations Ti and i+1, where the tape head of Q' is in square q in

configuration Ti, MS must check the following to determine whether y H- oi+1: (1) MS

must compare N (oi) and N, (ai +l) (if state (ai) e R) or N, (ai) and N, (a i+1) (if state (ai) G

L) to determine whether the neighborhoods around the tape head in ai and ai, 1 represent a

valid transition of Q' and (2) MS must check that the remainder of the configuration is

unchanged. To perform Test 1, MS builds four values to be used as bit masks: Lnak 0,

Lmask 1 , Rmask0 , and Rmask 1. For the number j of a It. (respectively, right) notch,

#Lmasko (respectively, #Rmask 1) will have I's in the bit positions corresponding to

N, (conf ig (j)) if j is even and N, (conf ig (j)) if j is odd, and the other notches will be all

O's. For the number j of a left (respectively, right) notch, #Lmask1 (respectively, #Rmask0)

will have l's in the bit positions corresponding to N, (conf ig (j)) if j is even and

N, (conf ig (j)) ifj is odd, and the other notches will be all O's. Thus, Lmasko and Lmask 1

test transitions from the left notches (transitions in a left sweep), and Rmasko and Rmask 1

test transitions from the right notches (transitions in a right sweep).

In Figure 7.1, the squares represent a set of four adjacent left notches, the arrows

indicate the squares that the tape head should be reading in each configuration, the x's

represent I's in #Lmasko, and the y's represent 1's in #Lmask 1. We use Lmasko to test

transitions from even numbered left notches. Lmasko isolates a constant size neighborhood

around the tape head to test the transition, and Lmasko isolates the remainder of the

configuration to test that it remains unchanged.

We describe the construction of Lmasko; MS constructs the other masks similarly. Let

us first fornially define Lmasko over a single slot. A slot comlSrises p notches, each f bits

long. In left notches j and j+l, forj even, #Lmasko has l's covering identical positions,

then in left notches j+2 and j+3, #Lmasko has I's covering positions two squares to the left.

In notch j, the tape head is on th" right of the two squares in the covered neighborhood; in

80

a4 al a2 0

II1111 1 I111111 II111111 1 1 1 1 1

x x x x x x x x
y y y y y y y y

Figure 7.1. Portions of Lmasko and Lmask,

notch j+1, the tape head is on the left of the two squares in the covered neighborhood. (That

is, I's cover the bit positions corresponding to N (conf ig (j)) and N'. (conf ig (j +1)).)

Assume without loss of generality that T (n) is even, Let d denote the number of bits

needed to specify each symbol in the tape alphabet, and let e denote the number of bits

needed to specify a neighborhood.

We will build Lmasko from mask, (defined below):

Lmask0 = mask, V (mask T f)

since #Lmasko has I's in identical positions in adjacent pairs of left notches. We build our

definition of maskc from a definition over a set of left notches, then a definition over a single

slot, then a full-size definition. Let us define the following masks. Recall that m =

O (T 3(n)).

maska = T '2 2 k(2f +2d)+ 2 k(2f +2d) + I + + 2 k(2f +2d) + e-1

maskb = (/ 2)(2 -d(2T(f)+2)maska) = 2 i 2 d (2T (n).2)) -maska

mask, = 2; 1(2P mask,) = (2 _2P)'maskb

Note that maska is the portion of mask, over only a single set of left notches, and maskb is

the portion of mask, over only a single slot.

81

Now let us describe how MS constructs mask,. First, MS constructs maska in

O (log T (n)) time, using fT (n)/2 processors. MS next computes p / (2)+2) 2jd(2T(n)+2)

Observe that p /(2T (n)+2) = 0 (T (n)), so MS also computes this quantity in 0 (log T (n))

time. MS now obtains maskb with a single multiplication. Finally, MS builds = 2-,P2ip.

This is more difficult, since -- is the sum of 2'n terms, and MS must build'- in 0 (log T (n))

= 0 (loglog 2m) time. We rely on an interaction between multiplication and shift, as in our

construction of In. We will show that'-: is also the product of m easily computed terms.

Define brookk = 2(P/2)2k + 1. Then

-= 2 12P = brookk.

MS computes brookk, I < k < m, in constant time, then builds B in 0 (log m) time with m

processors. Now we build mask, = =.maskb in one step. MS next builds Lmasko =

mask, V (mask, T f). MS constructs Lmask 1, Rmasko, and Rmask I similarly in

O (log T(n)) time.

We now describe how we use Lrnasko to test whether half the transitions from

configurations in left notches are valid. (We will use Lmask I to test the other half.) For each

j, where j is even and the number of a left notch, we test whether

config (j) - conf ig (j+l). Simulator MS performs thc tests for all such configurations

simultaneously.

Since a TM has a finite-state control and a neighborhood can be specified in a constant

number of bits, there are only a constant number of valid transitions. Let N denote the set of

all e bit strings y such that y contains a description of two tape symbols written by Q' and a

description of a state of Q' at the position of the tape head. That is, N is the set of strings

I

82

describing neighborhoods that can actually occur in a computation of Q'. Let TR denote the

set of pairs (, TI) such that , Tl e N, and in one step of Q', neighborhood with Q' in the

state and with cell contents specified by , becomes neighborhood TI; that is, TR is the set of

valid transitions between neighborhoods. For each (, TI) e TR, MS creates masks Cmask =

-"and r1mask =T (T f).

Let j be the number of a left notch and let j be even. Let yang (j) denote the portion of

notch j where the tape head of Q' should be in a computation (the position of

N, (config (j))); let yin (j) denote the rest of notch j. For each pair (, TI) c TR, MS tests

yang (j) fok equality with , for all such j, by using nask For those found equal, MS tests

yang (j +1) for equality with TI using TImask, and MS tests yin (j) and yin (j + 1) for equality

using Lmasko. For those found equal, MS tags notch j+1 with a 1. With a constant number

of such tests, MS checks the transitions from even numbered left notches j.

Similarly, MS tests the remainder of the transitions from all notches in all slots of I,,,

using Lmask 1, Rmask0 , and Rmask 1 . This completes Test 1.

MS now performs Test 2 and Test 3. Recall that Test 2 is a test of whether the first

notch in each slot contains the initial configuration of Q', and Test 3 is a test of whether the

last notch in each slot contains an accepting configuration of Q'. In 0 (log T (n)) time, MS

builds masks for each of these tests in the same manner as its other masks, then performs

Tests 2 and 3 in constant time, tagging those notches that pass the test with a 1 and those

notches that fail with a 0.

For each slot, MS now ANDs all its t-gs together (the tags written during the tests). All

the tags for all the slots are concatenated in a single cell c (g). If any notch in a slot fails one

of the tests, then the AND of tags in that slot is 0. If every notch in a slot passes every test,

83

then the AND of tags in that slot is 1. If con (g) = 0, then some notch in every slot ha; failed

a test, and no slot holds a valid computation; therefore, MS rejects the input. If con (g) * 0,

then some slot holds a representation of a valid computation; therefore, MS accepts the

input.

Theorem 7.1. For all T (n) > log n, NTIME (T(n)) g PRAM [* ,T]-TIME (log T (n)).

Proof. By the simulation above, a PRAM[*,T], MS, simulates an NTM, Q, via an oblivious

sweeping NTM, Q'. Q' simulates Q in time 0 (T2(n)), and MS simulates Q', hence Q, in

time 0 (log T (n)). El

Corollary 7.1.1. NEXPTIME c PRAM [* ,T]-PTIME.

7.2. Simulation of PRAM[*,T,,[] by TM

By itself, the shift operation produces numbers that can be extremely long, but not very

complex. We took advantage of this lack of complexity by manipulating encodings of

numbers when we simulated a PRAM[T,I] in Chapter 6. By itself, the multiplication

operation produces numbers that are more complex, but reasonably bounded in length. We

took advantage of this bound on length by addressing individual bits of numbers generated

with multiplication when we simulated a PRAM[*] in Chapter 4. The combination of

multiplication and shift gives rise to extremely long numbers of greater complexity. To

simulate a PRAM[*,T,,t], a TM once again uses the interesting bit encoding to deal with the

!-mgth; the increased complexity of the numbers requires the TM to use more space.

If i = j*k, where j has x, interesting bits, and k has xk interesting bits, then i has up to

x1 xk interesting bits. Consequently, an encoding of a number generated by a PRAM[*,T,$1

may have a doubly exponential number of nodes. Simon (1981a) gave only a short sketch as

I

84

a proof that RAM [* ,t]-PTIME EXPSPACE. He gave the bare bones of a proof of a

containment in doubly exponential space by writing out entire encodings, then said that the

space bound could be reduced to singly exponential space by using pointers into an

encoding. Here we present the details of a simulation of a PRAM[*,1,1j running in

polynomial time by a Turing machine running in exponential space. This simulation is

similar to the wrect simulation of a PRAM[I,,1 running in polynomial time on a Turing

machine running in polynomial space (Section 6.3) in that we manipulate pointers into the

interesting bit encoding of cell contents. Since the number of interesting bits is at most

doubly exponential, the TM uses exponential space to describe a pointer into an encoding.

Let Q be a PRAMi*,][,$ that uses T(n) time and P (n) processors. Let Q be a

PRAM[*,T,$] that uses only short addresses and simulates Q according to the Associative

Memory Lemma. Thus, Q' uses O (p 2(n)T(n)) processors, O (T(n)) time, and only

addresses in 0, 1 ... ,.0 (P (n)T(n)).

We construct a TM M that simulates Q via Q' in O (T2(n) 4 T(n) log n) space. Without

loss of generality, assume M is given T(n).

M uses five mutually recursive procedures: PCOUNTER, COMPARE, SYMBOL,

ADD, and MULTIPLY. The first four of these are the procedures of the same names from

Section 6.3, the direct simulation of a PRAM[t,,I1] by a TM, except that if instr is

r (i)<--r (j) * r (k) in SYMBOL, then SYMBOL (j, W, m, t) returns

V.ILTIPLY(j, k, Wt, m, t-l). Every parameter can be written in the space required to write

a pointer into an encoding (This space will be bounded in Lemma 7 2.3.)

When we add a column of partial products while performing a multiplication, the

column can include up to z 1's in it, where

85

z = 22.. T(n,)-l

is the operand length. To express the sum of the column, we would have to represent every

integer from 0 to z, and we cannot represent all such numbers in exponential space,

regardless of the representation. We use the Booth multiplier encoding algorithm (Hwang,

1979) to overcome this obstacle.

Let d be an integer and let w = len (d). Let b,,-, ... bo be the w -bit two's complement

representation of d. Define b-1 = 0. A plus Booth bit of d is a bit bi such that bi = 0 and

bi-, = 1; a minus Booth bit of d is a bit bi such that bi = 1 and bi-, = 0. A Booth bit of d is

a bit that is either a plus Booth bit or a minus Booth bit.

We define the Booth (B) encoding as B(d) = c.-t co, where ci = I if bi is a plus

Booth bit, ci = I (-1) if bi is a minus Booth bit, or ci = 0 otherwise. The Booth encoding

replaces strings of I's with a 1, O's, and a 1 (-1).

For example, B(0l 111111) = 10000001. Suppose we want to multiply a multiplicand

m by multiplier 01111111. By the naive algorithm, we add seven partial products, each of

which is m shifted by some value; by the Booth algorithm, we add only m f 7 and -m.

We define the Booth-interesting (BI) encoding, by

BI(0) = 0,

BI(1) = 1,

BI(d) = (I(ak), I(a 1);r),

where a, is the position of the j th Booth bit of d and r is the value (0 or 1) of the rightmost

digit of B(d).

The Booth-interesting encoding and the interesting bit encoding are closely related: an

interesting bit at position] of #d corresponds to a I or I in B(d) at position j+l. The

86

rightmost nonzero in B(d) is a 1, with I and T alternating afterwards. If #d begins with a 1

in the rightmost position, then B(d) has a I in the rightmost position; otherwise, B(d) has a 0

in the rightmost position. Because of this relationship, M readily converts from I(d) to

BI(d) with procedure ADD.

To perform a multiplication, we will convert the multiplier from the interesting bit

encoding to the Booth-interesting encoding, then multiply it with the multiplicand. By

Booth's algorithm, we have only as many partial products as we have Booth bits. Since each

integer in a computation has at most 0 (n2T(,)) interesting bits (Lemma 7.2.3), there will be

0 (n 2T ") partial products.

We now describe MULTIPLY(j, k, V,, m, t), where j and k are register addresses, q is

a pointer, m is a processor number, and t is a time step. MULTIPLY(j, k w4, m, r) returns

the symbol to which Wg points in I(val (rconm (j))*val (rconm (k))) if Wg points to a leaf in the

product; otherwise, MULTIPLY returns a signal that Vi points to a subtree of the product.

Assume that we are manipulating pointers into the Booth-interesting encoding of the

multiplier, vat (rconm, (k)). Let y denote I(val (rcon, (j))*val (rconm (k))).

Using the Booth encoding of the multiplier, we have 0 (n2Tr)) partial products. Each

partial product p is a copy of the multiplicand shifted by the value of the position of a Booth

bit, b, in the multiplier. If b is a plus Booth bit, then p is added: if b is a minus Booth bit.

then p is subtracted. To efficiently find the symbol y.Wt, we perform carry-save addition of

the partial products. This simplifies our computations, since if <---u 0 v, where 0 is a

Boolean operation, then each first-level subtree of 1(t) is a first-level subtree of l(u) or I(v)

To perform carry-save addition on three numbers, t, u, and v, we generate a sum term

S and a carry term C by Boolean operations on t, u, and v, Then we add S and C to get

87

t + u + v. Specifically, S = tEuev and C = (majority (t, u, v)) T 1, where

(majority (r, u, v)) returns 0 (1) in position y if the majority of bits in position y of #t, #u,

and #v are 0 (1).

We wish to compute the sum of g = n 2 (') operands, OP 1, OP2 . .OP3 . We use a

divide-and-conquer method, repeatedly splitting each sum of y operands into two sums of

y/2 operands, until y = 2. When we reach the base case, we declare one operand to be S and

the other to be C, then return one level up in the recursion. At this level, two partial sums

return their sum and carry terms: S and C1 and S2 and C2 . We produce sum and carry

terms, S 3 and C 3, for S 1 + C I + S 2 , then sum and carry terms, S4 and C 4 , for

$3 + C 3 + C2 . Then $4 and C4 are returned up to the next level of recursion. At the end of

the recursion, we have a sum term S9 and a carry term C., both of which were generated

solely by Boolean operations, and we add these together.

This description overlooks one important factor: just as we do not have enough space

to write an integer generated by a PRAM[*,T,$] or even its encoding, we do not have

enough space to write a sum or carry term. The key here is keeping track of subtrees through

the recursion. Instead of viewing this problem from the bottom as combining sum and carry

terms until we obtain S9 and Cg, let us view the ;-oblem from the top. M wants to obtain the

symbol indicated by the pointer W into the encoding of the sum of the partial products y and

is using carry-save; consequently, val (y) = S9 + Ce. By our rules of addition 'Appendix E).

M needs symbols in S9 and in C9. Suppose M wants a particular symbol in S9. By the

procedure described above, S3 is the XOR of three sum and carry terms; therefore, M looks

for symbols in each of the terms contributing to S3 according to our rules for XOR. (These

rul,.s are similar to the rules for OR in Appendix D.) M continues in this manner until it

I

reaches a base case, which is handled by our previously described rules. The recursion stops

after 0 (log g) = 0 (n 2T(n)) levels. This completes the description of MULTIPLY.

We now present lemmas, analogous to those of Section 6.1, that bound the length of a

pointer into an encoding. Lemma 7.2.1 bounds the depth of an encoding and the number of

interesting bits in a number generated by a PRAM[*,T,1 . Let bool be a set of Boolean

operations.

Lemma 7.2.1. If a processor P,, executes r(i)--r(j) * r(k), then depth (rconm(i)) - 2 +

max (depth (rconm(j)), depth (rconm(k))) and intbits (rconm(i)) <

intbits (rcon.. (j)) * (1 + intbits (rconn (k))).

Proof. The product rconm(i) is the sum of partial products. Each nonzero partial product is

rconm(j) shifted left by the value of the position of a 1 bit in rconm(k). We can add the

partial products by carry-save addition. Thus, we can perform a series of Boolean operations

on the partial products and a single addition at the end. By Parts i) and iv) of Lemma 6.1.1,

depth (rconm(i)) 5 2 + max {depth (rcon.(j)), depth (rconm(k))). Recall that we convert the

multiplier to the Booth-interesting encoding in the procedure MULTIPLY. For an integer d,

the number of Booth bits in B(d) is at most 1 + intbtts (d); therefore, Parts i) and ii) of

Lemma 6.1.1 apply to the number of Booth bits in B(d). Thus, the number of Booth bits in

B(rcon,(k)) is 1 + intbits (rconm(k)). Therefore, rconm(i) is the sum of I +

intbits (rconm (k)) nonzero partial products, each with intbits (rconmn(j)) interesting bits.

Therefore by Part i) of Lemma 6. 1. 1, intbits (rcon,,(i)) S

intbits (rconmn(j)) * (1 + intbits (rcon. (k))). 0

Part i) of Lemma 7.2.2 bounds the number of subtrees below first level nodes in an

encoding; Part ii) bounds the number of subtrees below fth level nodes in an encoding, f > 1.

I

89I
Lemma 7.2.2. Suppose a processor Pm executes r(i)--r(j) 0 r(k), where 0 e {+, T, $, *,

-, boot), 1(rconn(i)) = (I(ar)...1 (a 1); wi), I(rconm(j)) = (I(b), ..., I(bI); wj), and

I(rconm(k)) = (I(c,), ... I(c 1); wk), where av, by, c, denote the positions of the vth interesting

bits of rconm(i), rconm(j), and rconm(k), respectively.

i) For I(a,) (that is, the vth subtree at level I of I(rconm(i))), if 0 is *, then

intbits (a,) < max (intbits (bq)) + max {n itbits (Cq) 1.
q q

ii) For I(P3) a subtree at level f> 1, intbirs (3) < 1 + max {intbits (qth subtree of
q

rconm (j) at level f), intbirs (qth subtree of rconm(k) at level f)}.

Proof. i) A first level subtree I(a,) encodes the position p of an interesting bit in rconmn(i).

The subtrees of I(a,) encode the positions of interesting bits in p. Suppose Pm executes

r (i)--r (j) * r (k). Recall that we convert the multiplier to the Booth-interesting encoding in

procedure MULTIPLY and that for an integer d, the position of a Booth bit in1 B(d) is exactly

I beyond the position of an interesting bit in d. The product rconm(i) is the sum of partial

products of rconm(j) and B(rconm(k)). Each nonzero partial product is either plus or minus

rconm(j) shifted left by the value of the position of a Booth bit in B(rconm(k)). By Part i)b)

of Lemma 6.1.2 and the relationship between Booth bits and interesting bits, the number of

Booth bits in the position of a 1 or T in a partial product is at most max { intbirs (bq) } +

q

max (intbirs (cq)). By Part i)a) of Lemma 6.1.2, the position of an interesting bit in rconm (i
q

has the same upper bound.

ii) For any instruction, we add at most I to the value of a subtree of level f> 1, so Part

i)a) of Lemma 6.1.2 applies. C

.i I

90

Lemma 7.2.3. A pointer used by M can be specified in 0 (T(n) 2 T(n) log n) space.

Proof. Let d be an integer generated by Q. By Lemmas 6. 1.1 and 7.2.1, depth (d) < 2T (n).

If co is the input to Q and co has length n, then intbits (w) < n. Let I(13) be I(d) or a subtree of

I(d). By Lemmas 6.1.1, 6.1.2, 7.2.1, and 7.2.2, intbirs (13) n 2' . Therefore, any leaf in I(d)

can be specified by a pointer of length T (n) 2T(n) log n. (The tree has T (n) levels, and we

need space 2T(n) log n to specify the branch at each level.) 0

Theorem 7.2. For all T(n) > log n, PRAM [*, t,$]--TIME (T(n)) c

DSPACE (T 2 (n) 4 T(n) n log n).

Proof. By the simulation given above, a TM M simulates a PRAM[*,T,$] Q via Q'.

By Lemma 7.2.3, for each invocation of PCOUNTER, COMPARE, SYMBOL, ADD,

and MULTIPLY, M can write all variables and parameters in space 0 (T (n) 2 (n) log n). The

depth of recursion of the first four of these procedures is at most 0 (T (n)). The depth of

recursion of MULTIPLY is at most 0 (n2T(n)) for each invocation. Thus, M can simulate Q

via Q' in space O(T 2 (n) 4 T(n) n log n). 0

Corollary 7.2.1. PRAM [*, T,.,I-PTIME EXPSPACE.

1
91

Chapter 8. Probabilistic Choice

In this chapter, for various instruction sets op, we present simulations of probabilistic

PRAM[opls by deterministic PRAMopls. We also relate probabilistic unbounded fan-in

circuits and CRCW prob-PRAMs.

8.1. Background

Much attention and study have been devoted to probabilistic, or randomized, algorithms

in the past several years. Survey papers by Rabin (1976), Welsh (1983), and Rajasekaran

and Reif (1987) present a sampling of the work done on probabilistic algorithms. Naturally,

the probabilistic Turing machine (PTM) is the foundation for many probabilistic algorithms.

Gill (1977) defined the PTM as tossing a coin to decide state transitions. He also defined

different restrictions on language recognition: 1-sided, bounded 2-sided, and 2-sided error.

PSPACE on PTMs is equivalent to PSPACE on deterministic Turing machines (Simon,

198 1b).

Reif (1984) presented simulations between prob-RAM[*,+]s and prob-PRAM[*,+]s.

We define a configuration of a RAM to comprise the contents of each of the registers used in

memory and the contents of the program counter of the processor.

Reif defined his model as follows. Let c be a constant. From any configuration Ci, a

probabilistic machine Q may enter any configuration from the set NEXT in one step, where

NEXTi contains no more than c elements, c a constant. Q chooses each element of NEXT,

with equal probability, independently of previous and succeeding choices. Q accepts an

input string co of length n in time T(n) if the probability that a computation of Q on Co

reaches an ACCEPT instruction within T(n) steps is strictly greater than . We specify the

92

expression of the choice of next configuration as follows. Each instruction is distinctly

numbered and has the form:

r (i) (-- r (j) O r (k); P 2, ... Pf

in which p, P2 pf are integers denoting instruction labels, and f _< c; the processor

executes r(i) +-- r(j) 0 r(k), then uniformly selects one of {p1, P2 Pf} as the next

instruction. Thus a machine in a configuration such that it is currently executing the

instruction above has a choice of f possible next configurations. We allow repetition of

choices for next instruction (to weight the probability of selection).

Three theorems from Reif (1984) relating prob-RAMj[*,-]s and prob-PRAM[*,+]s

follow.

Theorem 8.1. (Reif, 1984) Let Q be aprob-RAM[*,+]j with constructible time bound

T (n) _> n, memory bound S (n), and integer bound I (n), where S (n) bounds the number of

registers used by Q and I (n) bounds the value of the largest integer. Then there is a prob-

PRAM[*,+] PZ that simulates Q. If Q is unit-cost, then PZ has unit-cost time bound

0 (S (n)log I (n) + log T (n)) and processor bound 0 (I (n)S (n)T (n)); if Q is log-cost, then PZ

has log-cost time bound 0 ((S (n) + log T(n))2) and processor bound 0 (4s(n)T(n)).

Proof (sketch). PZ activates one processor for each pair (X, t), where X is a configuration of

Q and t is a time step. Let NEXTX denote the set of possible configurations reachable by Q

from X in one step. Each processor with pair (X, t) randomly chooses some X" e NEXTX and

writes (X', t+1). This gives the equivalent of a one-step transition matrix. PZ then computes

the transitive closure of that matrix. 0

Theorem 8.2. (Reif, 1984) Let PZ be a prob-PRAM[*,+] with constructible time bound

T(n), memory bound S(n), and processor bound P (n). Then there is aprob-RAM[*,+] Q

!
93I

with memory bound 0 (S(n) + P (n)) simulating PZ. If PZ is unit-cost, then Q has unit-cost

time bound 0 (T (n)P (n)); if PZ is log-cost, then Q has log-cost time bound

O (T (n)P (n) log P (n)).

Proof (sketch). Q peforms a brute-force simulation, simulating one processor at a time. 0

Theorem 8.3. (Reif, 1984) Let Q be a prob-RAM[*,+] with constructible unit-cost time

bound T (n) . n and integer bound I (n). There is a prob-PRAM[*,] PZ that simulates Q

and has unit-cost time bound 0 ((T(n) log T(n) log(T(n)l (n)))%).

Proof (sketch). PZ partitions the T(n) time steps into consecutive intervals of length L. The

interval length is approximately T"(n). PZ then computes a look-up table that, for each

configuration X of Q, contains a configuration X' reachable by Q from configuration X in L

steps. 0

8.2. Choice Sequence Simulation

In this section, we simulate a prob-PRAM[op by a deterministic PRAM[op]. The

deterministic simulator evaluates all possible sequences of random choices in a computation

of the prob-PRAM[op].

Let Fr be the set of processors of prob-PRAM PZ that makes a random choice at time t.

We call the choice made by the ith lowest numbered processor in F1 the ith random choice

made by PZ at time t. Suppose that the processors of PZ have made a total of j random

choices before time t, and suppose that k = i + j. Then we call the choice made by the ith

lowest numbered processor in F, the kth random choice made by PZ. A computation of

prob-PRAM PZ has choice sequence a0 , a 1 , ..., a,-1 if in the jth random choice, for all

0 j< r-l, a processor chooses the ajth alternative.

94

In this section, we simulate a prob-PRAM[op] or prob-RAM[op] by a deterministic

PRAM[op] D. Machine D will generate all possible choice sequences of the simulated

machine, then determine the number of choice sequences that lead to acceptance.

For an integer x, let #x denote its two's complement representation. If #x =

br-, ... bIbo, then let <x > denote the sequence b0 , b1 , ..., br..

* Sequential case

For clarity of exposition, we present Theorem 8.4, the simulation of a Cequential prob-

RAM[op] by a deterministic PRAM[op]. The results stated in Theorem 8.4 are a corollary of

Theorems 8.5 and 86 with P (n) = 1.

Theorem 8.4. Let op e (0, (*}, {*, .4, (11,}, (*,T,,}). Let Q be aprob-RAM[op] with

time bound T (n) that makes R (n) random choices. There is a deterministic PRAM[op] D

that simulates Q in O (T(n)) time with 2 R(n) processors.

Proof. Suppose that each random choice made by Q is made between two alternatives. (At

the end of the proof, we specify changes to the proof for a Q that is allowed more than two

choices.) We construct a deterministic PRAM[op] D that simulates Q. Simulator D

activates 2R (,) processors in 0 (R (n)) time. These processors are numbered 2R(') ... ,

2-2R (n) - 1. Each processor number encodes a unique choice sequence of R (n) elements.

Pm computes a,, = m - 2 R (n). Pn will simulate a computation of Q with choice sequence

<Cy,n>.

Pm sets mask= 1L P.m will use mask to read bits of #am.

In simulating a general step of Q in which Q executes instruction instr, Pm does the

following. If Q makes no random choices in instr, then Pm simply executes instr. If Q

makes a random choice in instr, then Pm executes the portion of instr before making the

95

random choice, then uses mask to read the bit of c;. indicating the outcome of the random

choice. Next, Pm updates mask to prepare for the next random choice by adding mask to

itself. Since #mask had a single I in the jth bit position, after the addition #mask has a single

1 in the j+Ist bit position, enabling Pm to read the j+Ist bit of am when the next random

choice arises.

In this manner, Pm simulates each step of Q with choice sequence <am> in constant

time.

After simulating T (n) steps of Q, Pm decides whether Q halts on an ACCEPT

instruction. D now computes the number of computations that have accepted and the

number that have not accepted, then uses this information to decide, based on the acceptance

conditions, whether to accept or reject the input. This takes 0 (R (n)) time. The entire

computation takes O (R (n) + T(n)) steps. Since R (n) < T(n), D simulates Q in O (T(n))

time with 2 R(n) processors.

Now suppose Q can randomly select from up to c labels for the next instruction. Let d

be the least common multiple of 1, 2, ..., c. Alter the instructions with random choices so

that each has a choice of d labels. Let e = f log dl . For an integer x, where #x =

b- ..." b b 0 , let <x >' denote the sequence a 0, a, ,..., a7 1. - 1 , such that a0
= be bo, aI

= bae , * , be+, are - I = br-1 * • • br . We say that a computation of Q has choice

sequence <x >' if, for all 0 !5 j r le - 1, in the jth random choice made by Q from among d

alternatives, Q chooses the ajth alternative.

Let f be the least power of 2 greater than or equal to d. The deterministic PRAM[op] D

activates fR (-) processors in 0 (R (n)) time. The processors are numbered fR (n) ...

2. - 1. Each processor number encodes a unique choice sequence of R (n) elements.

iI

96

Pm computes a. = m - fR(n). pn will simulate a computation of Q with choice sequence

<an>'. In the course of simulating the computation as described above, if Pm reads an

element a, of <an>' such that ai > d, then the choice sequence is invalid. Pn then does not

report its computation as either accepting or rejecting. Of the fR(n) sequences, dR (n) are

valid, exactly the number of choice sequences -)f Q with d choices per random instruction. C3

.Parallel case

We extend the simulation of a sequential machine to a simulation of a parallel machine.

Theorem 8.5. Let op {{*}, {*,+}, {t,$}, f*,W,$l. Let PZ be aprob-PRAM[op] with

time bound T (n) and processor bound P (n) that makes R (n) random choices. There is a

deterministic PRAM[op] D that simulates PZ in time 0 (R (n) + T(n) log P (n)) with

P (n) 2R (n) processors.

Proofi Azsu-ne that -- h random chc~ce made by PZ is made between two alternatives. If

PZ makes random choices from among more than two alternatives, thea modify the proof as

described in the proof of Theorem 8.4.

We construct a deterministic PRAM[op] D that simulates PZ. D activates 2 R (n)

processors in 0 (R (n)) time. These processors are numbered 2R (n), .. , 2 2R(n, - 1. Each

processor number encodes a unique choice sequence of R (n) elements. Processor P,

computes an = m - 2R (n) P will simulate a computation of PZ with choice sequence

<am >.

To simulate an access to shared memory cell c (k) in a computation of PZ with choice

sequence <am>, D accesses its memory cell at address k. 2R(n) + ayn. Given k, D can

compute k.2 R (n) + (a in constant time.

97

Assume without loss of generality that each processor Pm of D has two local memories:

lmem 1 and ImeM 2. Pm uses lmem I to simulate the memory of a processor of PZ and Imem i

to perform its own computations.

Processor P,,, 2
R (,) < m < 2 2 R (nl, simulates PZ with choice sequence <a ,>.

Processor Pm of D corresponds to P0 of PZ until P0 executes a FORK instruction. At this

time, Pm executes a FORK instruction, halting and activating P2, and P2,+. After this

time, P 2m of D corresponds to P0 of PZ and does not FORK any more, and P 2 , j

corresponds to P 1 of PZ.

In simulating a general step of PZ in which processor Pk executes instruction instr, the

corresponding processor P) of D does the following. If Pk makes no random choices in insrr,

then P, simply executes the instruction. If Pk makes a random choice in instr, then P, must

choose a bit of cm to decide the outcome of the random choice of PZ. Suppose W processors

want to make a random choice at this step. The corresponding W processors of D sort

themselves by processor number in 0 (log W) time (Cole, 1986). Suppose Pi is the vth

lowest numbered processor wishing to make a random choice at this step. Then Pi reads the

vth bit of #an. Pj uses this bit to decide whether to select the first or second label listed in

instr. Processor P 2m then shifts am right by W bits, leaving only the unread bits of a,. Note

that W 5 P (n).

In this manner, D simulates each step of PZ with choice sequence <Gm> in

O (log P (n)) time.

After simulating T (n) steps of PZ, P 2m decides whether PZ halts on an ACCEPT

instruction. D now computes the number of computations that have accepted and the

number that have not accepted, then uses this information to decide, based on the acceptance

98

conditions, whether to accept or reject the input. This takes 0 (R (n)) time. The entire

computation takes 0 (R (n) + T (n) log P (n)) steps. 0

Next, we simulate a prob-PRAM by a deterministic PRAM with the basic instruction

set. The simulation is similar to the preceding one, except we do not interleave memory

locations allocated to different choice sequences, and the basic PRAM must precompute

tables of addresses and masks in order to access memory cells and the choice sequence.

Theorem 8.6. Let PZ be a prob-PRAM with time bound T (n) and processor bound P (n)

that makes R (n) random choices There is a deterministic PRAM D that simulates PZ in

time 0 (R (n) + T(n) log P (n)) with P (n)2R(fl) processors.

Proof. Given a prob-PRAM PZ, we construct a deterministic PRAM D that simulates PZ in

0 (R (n) + T (n) log P (n)) time. The simulation follows that presented in the proof of

Theorem 8.5 with three exceptions: (1) allocation of interleaved memory locations to

different choice sequences, (2) addressing of memory cells, and (3) extraction of bits of #a.

Exception 1: Basic PRAM D cannot quickly compute k.2R (') + a.. for each memory

access to cell k. Instead, D allocates a block of cells to each choice sequence. The processor

assigned to each choice sequence initially computes the starting address of its block of cells.

PZ can only access cells with addresses up to (n2 T(nO)). Thus, a block of cells of size

0 (n2T(n)l) is allocated to each choice sequece.

Exception 2: The addresses of the blocks assigned to each choice sequence range up to

0 (n R (n) 2T(n)). D computes a table of the addresses of the first cell of each block in

0 (T(n) + log R (n)) time. D then uses this table to access the necessary cells in constant

time.

Exception 3: D computes a set of R (n) masks prior to beginning its simulation of PZ.

For 0 < i < R (n) - 1, maski = 2'. D computes these masks in 0 (R (n)) time. In the previous

simulation, processor P 2, shifted am right by W bits after W processors read bits of (,,.

Here, D cannot perform right shifts, so P 2m keeps track of the last bit read of am. With this

information, a processor P wishing to make a random choice can select the appropriate bit

of am.

D spends 0 (R (n) + T(n)) initialization time and 0 (log P (n)) time to simulate each

step of PZ; hence, D simulates PZ in time 0 (R (n) + T (n) log P (n)). 0

8.3. Markov Chain Simulation

In this section, we present a simulation of a prob-PRAM[*,] PZ by a deterministic

PRAM[*,] D in time 0 ((P (n) + log I(n))'S (n)" log(T(n))) with 0 ((kP(n)l (n)) 3 s(n))

processors. We achieve this by treating the computation of PZ as a finite Markov chain in

which each configuration of PZ is a state. Depending on the relative values of T (n), S (n).

and P (n), !his simulation may be more efficient for a PRAM[*,-] than the simulations in the

previous section.

Lemma 8.7.1. (Associative Memory Lemma for prob-PRAMs) Let op c { +, 1" ,1,}. For

all T (n) and S (n), every language recognized in time T (n) using at most S (n) cells by a

prob-PRAM[op] PZ can be recognized in time 0 (T (n)) by a prob-PRAM[opl PZ' that uses

0 (P (n)S (n)) processors and accesses only cells with addresses in 0 ... 0 0 (S (n)).

Proof. The proof follows along the same lines as the proof of the Associative Memory

Lemma (Chapter 3), with an extension to account for probabilistic choice. Replace

P (n)T(n) with S (n), since in the proof of the Associative Memory Lemma P (n)T(n) is used

as a bound on the number of accessed cells.

I

100

When a proessor Pg of PZ executes an instruction r(i)4-r(j) 0 r(k); Pl, " P, it

reads rcong () and rcong(k), computes v := rcong(j) 0 rcong(k), writes v in rg(i), and

uniformly selects one of (Pl, " " ", Pf} as the next instruction. The corresponding processor

Pn of PZ' simulates the first three parts of this step just as described in Chapter 3. Pm

performs the fourth part by uniformly selecting one of {p, " ", Pt}. The time bound

follows directly. 0

Theorem 8.7. Let PZ be a prob-PRAM[*,+] with time bound T (n), processor bound P (n),

memory bound S (n), integer bound I (n), and program length k. Then there is a

deterministic PRAM[*,+] D that simulates PZ in time O ((P (n) + log l(n))'S(n). log(T(n)))

with 0 ((kP P n)I (n)) 3S (n)) processors.

Proof. Let PZ' simulate PZ according to Lemma 8.7.1. Then PZ' has time bound 0 (T(n)),

processor bound 0 (P (n)S (n)), memory bound S (n), and integer bound I (n).

Fix an input of length n. PZ' has 0 ((kp n)l (n))S(n)) distinct configurations with

memory bound S (n), since the value of the program counter of every processor must be

considered; each can be encoded by a distinct integer no more than 0 ((kp"(n)1 (n))SIn)).

Each instruction in the program of PZ' has up to c choices of next instruction. Let d be

the least common multiple of the numbers of choices. D will view each instruction of PZ' as

having d choices by duplicating all choices. This view preserves the probability of selecting

each of the original choices,

D activates (kt'")l(n))2S () processors in 0 (S (n)(P (n) + log I (n))) time, one

processor for each pair of configurations. The processor number of each of the

(k P"Wl (n))2S (,n) processors encodes a pair (t, U), where t and u denote configurations of

PZ'. D builds a transition probability matrix A. The processor associated with pair (r, i)

101

counts the number of ways of reaching configuration u from configuration "r in one step.

This gives an integer in {0, 1 ... , d) which, divided by d, gives the probability of a transition

from -t to 'J.

We now have the matrix dA. Each processor activates (kP(n)l(n))S(n) processors in

0 (S (n)(P (n) + log I (n))) time to be used for squaring the matrix. D squares the matrix

F log T (n)1 times in the straightforward way. Each squaring takes

0 (S (n)(P (n) + log I (n))) time. We now have the matrix dT(n)A T(n). Entry (r, 1) ofA T(n)

is the probability of reaching configuration ii from configuration t in T(n) steps. D sums the

number N of ways of reaching each accepting configuration from the initial configuration. If

2N > dT(n) (that is, if the probability of reaching an accepting configuration is greater than

2), then D accepts; otherwise, D rejects. 0

8.4. Probabilistic Circuits

In this section, we relate probabilistic unbounded fan-in circuits and CRCW prob-

PRAMs using the relationship between their deterministic counterparts (Stockmeyer and

Vishkin, 1984). We find that, just as in the deterministic case, time and number of

processors of a prob-PRAM correspond simultaneously to depth and size of a probabilistic

unbounded fan-in circuit. Time and depth correspond to within a constant factor; number of

processors and size correspond to within a polynomial.

A probabilistic circuit PC,, m is a circuit with n regular inputs and m random inputs.

gTheorem 8.8. Let PZ be a prob-PRAM with time bound T (n) and processor bound P (n).

There is a probabilistic unbounded fan-in circuit PCn,.p(,,)T(,) that simulates PZ in depth

0 (T(n)) and size q(P(n), T(n), n), where q(P, T, n) is bounded above by a polynomial in

P, T, and n.

I

102

Proof. Theorem 2.1 states the deterministic result of Stockmeyer and Vik:hkin (1984). We

modify the proof given by Stockmeyer and Vishkin for the simulation of a deterministic

PRAM by a deterministic circuit. Assume that all probabilistic choices made by PZ are

between two alternatives. The circuit presented by Stockmeyer and Vishkin has an identical

carton of gates for each time step and each processor. Each carton is made of 13 blocks. We

add a random input bit to one of these blocks: [Update-ic]. This block selects the next

instruction to be executed by the simulated processor. If the instruction currently being

executed calls for a random choice, then the next instruction is selected based on the value of

the random bit. PC,,.p (n)T(n) keeps the same size and depth bounds as stated in Theorem 2.1.

0

Theorem 8.9. Let PCnm be a probabilistic unbounded fan-in circuit of size S and depth T

with n regular inputs and m random inputs. There is a prob-PRAM PZ that simulates PC in

time 0 (T + log m) with 0 (S + n) processors.

Proof. Theorem 2.2 states the deterministic result of Stockmeyer and Vishkin (1984). We

modify the proof given by Stockmeyer and Vishkin for the simulation of a deterministic

circuit by a deterministic PRAM. The only difference between a probabilistic circuit and a

deterministic circuit is the m random inputs in the probabilistic circuit. PZ activates m

processors in 0 (log m) time. Each processor simulating one of the random inputs randomly

chooses a value, then writes that value to the cell corresponding to its random input.

The remainder of the simulation follows as in Stockmeyer and Vishkin (1984). 0

I

103

Chapter 9. Simulation by Sequential Machines

We present here simulations of PRAMs with enhanced instruction sets by RAMs with

the same instruction set through uniform, bounded fan-in circuits. We will prove that a

RAM[op] can efficiently simulate a uniform, bounded fan-in circuit and then show that the

circuits presented earlier that simulate a PRAM[op] meet the uniformity conditions.

9.1. Definitions

We use the following definitions relating to circuits (Ruzzo, 1981).

* A circuit is a directed acyclic graph, where each node (gate) with indegree d > 0 is labeled

by the AND, OR, or NOT of d variables, and each node with with indegree 0 is labeled by

"inp" (an input). Nodes with outdegree 0 are outputs.

e A circuit family C is a set (C 1 , C 2 , - " -) of circuits, where Cn has n inputs and one

output. We restrict the gate numbering so that the largest gate number is (Z(n)) 0() , where

Z (n) is the size of C,. Thus the gate numbers coded in binary have length 0 (log Z (n)).

* The family C recognizes A g (0, 1) * if for each n, Cn recognizes A (n = A r) {0,1)}n, that

is, the value of C,, on input inp 1 , inp 2, ..., inp,, e (0, 1) is 1 if and only ifinp I ... inpn r A.

If Cn has at most Z(n) gates and depth D (n), then the size complexity of C is Z(n) and the

depth complexity is D (n). A language Q is of simultaneous size and depth complexity Z (n)

and D (n) if there is a family of circuits of size complexity Z (n) and depth complexity D (n)

that recognizes Q.

e A bounded fan-in circuit is a circuit where the indegree of all gates is at most 2. For each

gate g in Ca, let g (X) denote g, g (L) denote the left input to g, and g (R) denote the right
! I input to g.

|! I
! I

104

e An unbounded fan-in circuit is a circuit where indegree is unbounded. For each gate g in

C,, let g (X) denote g, and let g (p), p = 0, 1, 2, ..., denote the pth input to g.

* The bounded direct connection language of the family C = IC 1 , C 2, • •), LBDC, is the

set of strings of the form<n, g, p, h>,where n, gr {0, 1),p e (k, L, R],he {inp, AND,

OR, NOT) u 10,1 " such that in C. either (i) p = X and gate g is a h-gate, h e (inp, AND,

OR, NOT), or (ii) p # X and gate g (p) is numbered h, he {0, 1)*.

e The unbounded direct connection language of the family C = IC 1 , C 2 , •), LUDC, is the

set of strings of the form <n, g, p, h>, where n, ge (0, 1)*,p e (k) u (0, 1....Z(n)°1) },

h r { inp, AND, OR, NOT) {0, 1 " such that in Cn either (i) p = X and gate g is a h-gate, h

e {inp, AND, OR, NOT), or (ii) p * X and gate g (p) is numbered h, h C {0,1)*.

Let us now introduce two new definitions of uniformity. Let I (Z (n)) be the

concatenation of all pairs (g, h), where g, he (0, 1, ... , Z(n) (1)).

e The family C = (C 1, C 2 , • " ") of bounded (respectively, unbounded) fan-in circuits of

size Z(n) is VM-uniform if there is a RAM[T,.] that on input I(Z(n)) returns an output

string in 0 (log Z(n)) time indicating for each pair (g, h) whether <n, g, L, h> is in LBDC

and whether <n, g, R, h> is in LBDC (respectively, indicating for each pair (g, h) the value

ofp such that <n, g, p, h > is in LUDC, forp = 0, 1, ..., Z(n) ° 1), or an indication that no

<n, g, p, h > is in LUDC). (Note: We chose the term VM-uniform because Pratt and

Stockmeyer (1976) called their restricted RAM[TI',J] a vector machine.)

e The family C ((C 1 , C 2, • • -) of bounded (respectively, unbounded) fan-in circuits of

size Z (n) is MRAM-uniform if there is a RAM[*] that on input I (Z (n)) returns an output

string in 0 (log Z(n)) time indicating for each pair (g, h) whether <n, g, L, h> or

<n, g, R, h >is in LBDC (respectively, indicating for each pair (g, h) the value of p such that

10o

<n, g, p, h> is in LUDC, forp = 0, 1 ..., Z(n)0 (1), or an indication that no <n, g, p, h> is

in LUDC). (Note: We chose the term MRAM-uniform because Hartmanis and Simon (1974)

called their RAM[*] an MRAM.)

e A gate g is at level j of C,, if the longest path from any circuit input to g has length j. Gate

g is at height j of C,, if the longest path from g to the output has length j.

* Let C,, be a bounded fan-in circuit consisting entirely of AND, OR, and inp gates with

depth D (n). We construct the circuit CT(C,), the circuit tree of C,, from C,. Let gate a be

the output gate of C,, and let a be of type € e (AND, OR) with inputs from gates b and c.

Then the output gate of CT(C,,) has name (0, a), type 0, and inputs from gates named (1, b)

and (2, c). Thus, gate (0, a) is the gate at height 0 of CT(C,,) and gates (1, b) and (2, c) are

the gates at height 1 of CT (C,,). Now suppose that we have constructed all gates at height j

of CT(C,,), and we wish to construct the gates at height j+l. Each gate (i, e) at height j

corresponds to a gate e in C,,. If e is of type 0 e (AND, OR), then gate (i, e) is of type 0.

Suppose gate e has inputs from gates f and g. Then the inputs to gate (i, e) of CT(C,,) at

height j+l are the gates (2i+l,f) and (2i+2, g). If gate e is of type inp, that is, an input, and

j < D (n), then (i, e) is of type OR (if (i, e) is at an even numbered level) or type AND (if

(i, e) is at an odd numbered level), and the inputs to gate (i, e) at height j+I are the gates

(2i+l,e) and (2i+2, e). If gate e is of type inp and j = D (n), then (i, e) is of type inp and

CT(C,,) has no gates at height j+l connected to gate (i, e). Figure 9.1 contains an example

of a circuit tree.

e In CT(C,,), define path (a, b) to be the path, if one exists, from gate a to gate b.

* In CT (C,,), the distance from gate b to gate c is the length of the shortest path from b to c,

if such a path exists. We order all gates at distance d from gate b according to the relationI
I

106

a

Circuit C 6

(8, h) (10, j) (12,j) (14,1)
(7, g) (911) (11,) (13, k)

(3, d) (4, eX5, e) (6, f

i (0, a)

Circuit tree CT (C 6)

Figure 9. 1. Circuit tree example

107• I
order(e, f) such that order (e, f) is true if path (e, b) intersects path (i, b) at a gate which

I path (e, b) enters at the left input and path (f, b) enters at the right input. Gate e is the qth

I ancestor of gate b at distance d if gate e is the qth smallest gate in the ordering of the gates at

distance d. We say that the smallest gate at distance d is the 0th ancestor. In the example

above, gate (10, j) is the 3rd ancestor of gate (0, a) at distance 3. Note that the same gate in

C,, can correspond to several ancestors of a gate at distance d in CT (C,).

e A double-rail circuit is a bounded fan-in circuit that is given as input inp 1, inp 2. inpn

and their complements inp 1 , inp 2, ..., inp, and that contains no NOT-gates.

0 Note that every gate in a double-rail circuit, except the input gates, has exactly two

inputs.

* A layered circuit is a double-rail circuit such that all gates at level i, for all odd i, are

AND-gates and all gates at level i, for all even i, are OR-gates, and each input to a gate at

level i is connected to an output of a gate at level i - 1.

Lemma 9.1.1. Let C = {C 1, C 2,) be a VM-uniform (MRAM-uniform) family of

bounded fan-in circuits of size Z (n) and depth D (n) recognizing language L. There exists a

iii VM-uniform (MRAM-uniform) family of bounded fan-in, double-rail circuits E =

I {E1 , E 2 , • • •) of size O (Z(n)) and depth D (n) recognizing language L.

Proof. Fix an input size n. We construct E,, from C,. Suppose that for each input inpi we

have its complement, inpi. For each gate g of type y e {inp, AND, OR) in Cn, circuit E,, has

agte goftypey. E,, also has a gteg': ify = AND, then g' is of typeOR; if v'-C1R ther

g' is of type AND; and ify = inp and gate g is input inpi, then gate g' is of type inp and is

input inpi. Suppose h is an input to gate g in C,. If h is of type y e (inp, AND, OR), then in

I
I

108

E,,, gate h is also an input to gate g and gate h' is an input to gate g'. If h is of type NOT

with input f, then in E,,, gate f' is an input to g and gate f is an input to g'.

Thus, E is a VM-uniform (MRAM-uniform) family of double-rail circuits with size

0 (Z(n)) and depth D (n) recognizing language L. 0

Lemma 9.1.2. Let E - {E1, E 2 , • be a family of VM-uniform (MRAM-uniform),

bounded fan-in, double-rail circuits of size Z (n) and depth D (n) recognizing language L.

There exists a family of VM-uniform (MRAM-uniform), bounded fan-in, layered circuits F

= {F1, F,, 1 of size O (Z(n)) and depth 0 (D (n)) recognizing language L.

Proof. Fix an input size n. We construct F from E,,. Suppose j is odd and that we have

constructed j -1 levels of Fn from the first i -1 levels of En. We construct level j of Fn.

First assume that all inputs to gates in level i of E,, are outputs from level i - 1. If all gates

in level i of En are AND-gates, then level j of F, is identical to level i of En, and we move

on to construct level j+l of F,. Otherwise, for each AND-gate in level i of E,, we place an

AND-gate in the corresponding place in level j of Fn. For each of these AND-gates h in F,

in level j, there is an OR-gate g in level j+1 with two inputs h. For each OR-gate in level i

of E,, we place an OR-gate in the corresponding place in level j+l of F,,. For each input f

of these gates, we place an AND-gate in level j with two inputs f. Then we move on to

construct level j+2 of F,,. If j is even, we construct level j of F, similarly.

Now we remove the assumption that all inputs to gates in level i of En are outputs from

level i - 1. Construct Fn as described above with one exception. If an input to a gate gE in

E, at level i is the output from gate hF at level i', i' * i - 1. then do not directly connect the

output from the corresponding gate hF to an input of gF in Fn. Instead, between gates hF and

gF insert alternating AND- and OR-gates, with AND-gates at odd levels and OR-gates at

I
109!

even levels, and let both inputs to a gate at level k be connected to the output of the newly

inserted gate at level k - I.

Thus, F is a VM-uniform (MRAM-uniform) family of layered circuits with size

0 (Z(n)) and depth 0 (D (n)) recognizing language L. 0

9.2. Simulation of VM-Uniform Circuit by RAM[T,,1

In this section, we restructure a VM-uniform, bounded fan-in circuit, then simulate the

restructured circuit on a RAM[T,,t1. The RAM[T,,] will operate on a circuit tree rather than

the original circuit because the RAM[T,,] can very easily run a circuit tree on an input, once

the input bits are properly placed. The RAM[T,,I, will also split the circuit into slices of

depth 0 (log Z (n)). In this way, the RAM[T,,I, will balance the time to generate the circuit

with the time to run the circuit.

Let C = (C 1, C 2, • ' •) be a VM-uniform family of bounded fan-.n circuits of size

Z (n) and depth D (n) recognizing language L. For an integer x, let #x denote its two's

complement representation; the number of bits in the two's complement representation will

be clear from the context. We now describe how a RAM[T,,I11 can simulate C.

Simulation. Fix an input length n. Circuit C,, has size Z(n) and depth D (n). We

construct a RAM[,$] R that recognizes L (n) in time 0 (D (n) + log Z (n) loglog Z (n)).

By Lemmas 9.1.1 and 9.1.2, we construct a layered circuit F from C,, with size

O (Z (n)) and depth 0 (D (n)) that recognizes language L (n) . Machine R simulates C, via F,.

For simplicity, let us say that F, has depth D (n) and size Z (n), and that all gates of F, are

numbered from (0, 1..., Z(n)-l}.

110

Let us first outline the simulation.

Stage 1. R generates aZ(n) x Z(n) ancestor matrix A in which each entry (g, h)

indicates whether gate h is an input of gate g in F,,.

Stage 2. R operates loglog Z(n) times on matrix A, obtaining matrix A log Z(n).

Stage 3. R extracts from A log Z(,,) a description of the circuit in slices of depth

O (log Z(n)) and their circuit trees.

Stage 4. R runs each slice consecutively on the input.

Stage 1: Computation of ancestor matrix. Each entry in ancestor matrix A is a bit vector

Z (n) bits long. Entry (g, h) has a 1 in bit position 0 (1) if gate h is the left (right) input to

gate g; otherwise, bit position 0 (1) holds 0. All other bit positions hold 0. Let A I = A. In

general, R operates on A i to produce A 2j. After loglog Z (n) operations, A log z(n)(g, h) holds

I in each bit position j if gate h is the jth ancestor of gate g at distance log Z (n), 0 otherwise.

R will first write all pairs (g, h), where g, h e (0, 1, ..., Z(n)-I), concatenated in a

single register in 0 (log Z (n)) time. We view a register as the concatenation of Z 2 (n) slots,

each slot Z (n) bit positions long. Pair (g, h) is written in slot gZ (n) + h with the least

significant bit of #g in the Oth bit position in the slot and the least significant bit of #h in the

Z (n)/2th bit position in the slot. R constructs the first component of every pair one bit

position at a time, then the second component of every pair one bit position at a time.

We now describe how R builds the first component of each pair; R builds the second

component similarly. We build the first component as a bit vector with #g in each of slots

gZ (n),... (g + 1)Z (n) - 1, for each g, 0 < g < Z (n)- 1. Let t denote this bit vector,

R first constructs a bit vector 4 in which each slot gZ(n), 0 < g 5 Z(n) - 1, holds #g,

Let q = log Z (n). Each integer g is q bits long. R constructs 4 in q phases, generating one bit

I
IIII

position at a time for all g. Let maski denote the bit vector where #maski has a I in the ith bit

I position of each slot and O's elsewhere. Let Si = A maski; that is, in the ith bit position of

q-i

each slot, #Sj equals #t and is O's elsewhere. Thus, = V Sj. In phase i, R constructs Sqj,

using 0 (q) time in phase I and 0 (1) time in every other phase.

To build Sq-1, start with

t (-- 1T [(Z(n))(Z(n)/2) +q -,

then forj = 1, ..., q- l, execute the following:

uj *-- tj T (Z n)'2j - l)

tj+1 I,- t vUj.

Finally, Sq- = rq, and R writes Sq-i in r 1 and r2 .

A t th st r o f , i , a d re i t r r
At the start of phase i, register r I contains SqI v Sq-2 v vSq+i, and register r,

contains Sq-i+1. R constructs Sq- i from Sq-i+1 as follows:

r 3 - r 2 ,I (2q-i)(Z2 (n)) (* Z(n) is the slot size and slots holding

g's are Z(n) apart *)

r 4 - r2 A r3 (*half of the I's in #rcon (2)*)

r 5 r2 $r 4 (* the other half of the 1 's in #rcon (2) *)

r6 r4 ,I (2q-i)(Z2 (n))

r 2 -r 5 V r 6

r - rl Vr 2

and r1 holds Sq-1 V ... V Sqji V , and register r 2 holds Sq.i .

I Each phase after the first takes 0 (1) time, and R builds 4 in 0 (q) = 0 (log Z(n)) steps.

iR next buildsu from 4 by filling in the empty slots in log Z (n) phases. Let = .In

phase i, R takes the output t of phase i-1 and computes

!

ui 4- T Z (n)'2'

ti + I *.- U V ti .

We set = t ogz(n)+. In this manner, R builds the first component of each pair in

0 (log Z(n)) time.

R builds the second component of each pair similarly. R now has a register containing

che concatenation of all pairs (g, h), 0 :g, h Z(n) - 1. For each pair (g, h), R determines

simultaneously whether gate h is an input to gate g. If gate h is the left (right) input to gate

g, then R writes a I in the first (second) position in the slot. By VM-uniformity, this process

takes 0 (log Z (n)) time. The resulting bit vector constitutes the ancestor matrix A.

Stage 2: Computation of distance log Z(n) ancestor matrix. Pratt and Stockmeyer (1976)

proved that given two zx z Boolean matrices A and B, a RAM[,1] can compute their

Boolean product G, defined by

G(i, j) = V (A(i, k) A B (k, j)),
k

in 0 (log z) time. The RAM[T,,Lj performs the AND of all triples i, j, k in one step and the

OR in 0 (log z) steps. Let Od be a function, specified below, with two bit vectors as inputs

and one bit vector as output. Given two zx z matrices A and B whose elements are bit

vectors m bits long, let us define the function Hd(A, B) = G, where

G (i, j) = V Od(A (i, k), B (k, j)).
k

We prove that a RAM[IT,1 can compute the matrix G = Hd(A, B) in 0(log z + log m) time,

The RAM[TII performs Od on all triples i, j, k in O (log z + log m) steps and the OR in

0 (log z) steps. Since we have the matrix multiplication algorithm of Pratt and Stockmeyer,

we prove that a RAM[T,,] can compute Od(A (i, k), B (k, j)) in 0 (log m) time to establish

this bound. In our case, m = z = Z (n).

I
113

Suppose R has operated log d times on A. Call the resulting matrix Ad. A 1 in bit

position i of A(f, g) indicates that gate g is the ith ancestor of gate f at distance d. We want

Od(Ad(f, g), Ad(g, h)) to return a bit vector A 2d(f, h) with a 1 in bit position i if gate h is

the ith ancestor of gate f at distance 2d, and 0 in bit position i otherwise.

Assume m is a power of 2. Let x = 2d
. Let a and 03 be integers x bits long: #a =

.-xI .. ac.0 and #03 = 13x-j ... 1313O. We define the function VO(L, 3) so that for each 1 in

bit position a in #a and each I in bit position b in #13, in the result y = Od(a, 13), #7 has a I in

position a* 2d + b. If either a or 3 is 0, then y is 0.

Before describing how R performs ed, we define two functions SPREAD and FILL that

R will use to perform ed. The function SPREAD (#a, y) returns the bit vector #a' =

a-10" • Oa•.-20 • •al 0....• 0a0 in which ai+1 is y bit positions away from ac, separated

by O's, for all 0 -< i _ x - 2.

Lemma 9.1.3. For any y, R can perform SPREAD (# c, y) in time 0 (log x), where #a is x

bits long.

Proof. R performs SPREAD in 0 (log x) phases of mask and shift operations. Note that the

subscript of each bit in #a specifies its position. In phase i, R uses maski to mask away all

bits of #a whose subscript has a 0 in the (log x - i)th position. R then shifts the remainder of

the string.

In particular, R creates mask I in three steps: mask1 <- 1 T (x /2); mask1 4<- mask1 - 1;

mask1 - mask 1 T (x/2). Thus, #mask I has l's in its x/2 most significant positions and O's

in the remaining x/2 bit positions. (We can readily divide by powers of 2 using the right

shift operation and multiply by powers of 2 using the left shift operation.) In general, #maski

has a 1 in every position p such that p has a I in the (log x - i)th bit position.I
I

114

Let temp I = a. We let tempi hold intermediate results as R spreads the bits in a to get

Given tempi and maski, R constructs tempi+ and maski~l in phase i as follows.

tempi(l) -- tempi A maski (* mask away bits of #a whose subscript

has 0 in the (logx - i)th bit position *)

tempi(2) <-- tempi ED tempi(1) (* the bits of #cc masked away

in the previous step *)

tempi(1) <-- tempi(1) T ((x/2i)* (y-l)) (* spread the unmasked bits *)

tempi,, <-- tempi(l) v tempi(2) (* combine with masked bits *)

maski(1) <--maski I, (x/2 i" l)

maski(2) - maski (1) A maski

maski(3) -- maski(1) maski(2) (* separate bits of maski

into two groups *)

maski(4) maski(2) T [(x/2I) * (y -1)+(x /2'+')]

maski + I-- maski(3) V maski(4)

In 0 (log x) phases, each taking a constant amount of time, R performs

SPREAD (#a, y). 0

Let as = SPREAD (#a, y). The function FILL (as, y) returns the value af , where #a- =

Xx_ 1ax- 1 a -lX_ 2 * "a ' a10 1 alCx0 .0 .. a 0 , in which positions iy ... , (i+l)y-I

have value ai. Assume y is a power of 2. (Note: One may think of a5 as ac spread out and

al as a& filled in.)

Lemma 9.1.4. R can perform FILL (a s , y) in time 0 (log y),

t

115

Proof. R performs FILL (aS, y) in 0 (log y) phases of shift and OR operations. Let af(i)

represent the outcome of phase i.

"I temp 4- c*(i) T 2 j-1

a (i+1) (-- a(i) V temp

I Then FILL (as, y) = a= f(logy). Each phase takes constant time, so R performs

FILL(a , y) in 0 (logy) time. 0

Now we describe how a RAM[T,,] R computes ed(a, 03) in 0 (log x) = 0 (log m) steps.

R first computes aS = SPREAD (#a, 2 d) in 0 (log x) time. Each 1 in position i in #a

produces a 1 in position i 2d of #a. R concatenates x = 2d copies, each m bits long, of #a s

in 0 (log x) time. Let squid denote the value of this concatenation. R then computes 13S =

SPREAD (#3, m) in 0 (log x) time; this aligns a bit of #P with each copy of #a' in #squid.

R computes I3 = FILL (3s , m). R then performs squid <-- squid A V3, which blocks out

each copy of #a' in #squid that corresponds to a 0 in #13.

Next we explain how for each nonzero bit Pj of #13, R shifts the jth copy of #a to the

left by j bits in 0 (log x) phases of mask and shift operations. In phase i, R masks away all

copies of #a corresponding to nonzero bits 13y for which the (log x - i)th position of #j is 0,

then shifts the remainder of the vector.

R creates maskl as follows: mask1 4- 1 T (mx/2); maskI <- mask1 - 1;

maskl -- mask I T (rex12). Thus, #mask1 has l's in its rex/2 most significant positions and

1 O's in the remaining mx/2 bit positions.

!
!
i

116

Let temp I = squid.

Given tempi and maski, R constructs tempi+, and maski+1 in phase i as follows.

tempi(1) -- tempi A maski

tempi (2) -- tempi (tempi (1) (* split bits of tempi into two sets *)

tempi(1) - tempi(l) T (210gx-i) (* shift one set *)

tempi + I-- tempi(l) V tempi(2) (* recombine *)

maski(1) <-- mask, I1 (m /2i +1)

maski(2) -maski(1) A maski

maski(3) *-- maski(1)Dmask,(2) (* split bits of mask, into two sets *)

maski(4) - maski(2) T (x/2') (* shift one set *)

maskil +-I maski(3) V maski(4) (* recombine *)

Let a block of size m of #y = y. Y " - yo be a set of bits yQ +I)m -I yjm. Finally, R ORs

together all blocks of size m in 0 (log m) steps. (Formerly, each block of size m was a copy

of #as; now some have been shifted.) The resulting bit vector is 0,(CL, 13). R has computed

ed(ca, 03) in 0 (log m) steps.

Recall that we defined Hd(A, B) = G, where

G (i, j) = V Od(A (i, k), B (k, j)).
k

To perform Hd(A, B) on two zx z matrices A and B in 0 (log z + log m) time, we must show

that we can perform Od(A (i,k), B (k,j)) in 0 (log z + log m) time when the matrices A and B

are given as bit vectors. We simply allow enough space between elements in the bit vectors

A and B so that operations on adjacent pairs do not interfere with each other, and we can

generate all masks and perform all operations in 0 (log z + log m) time.

117

Given the Z(n)x Z(n) ancestor matrix A I = A with entries Z(n) bits long, R computes

A 2 =H 1 (A 1 ,A),thenA 2j=Hj(Aj,A),foreachj=1,2,4, -••,logZ(n)-l. LetG=

A log Z(n). Each Hd operation takes time 0 (log Z (n)) to compute, and R executes Hd for

loglog Z (n) values of d. Hence, R computes G in 0 (log Z (n) loglog Z (n)) time.

Stage 3. Extraction of slices and circuit trees. We partition Fn into D (n) / log Z (n) slices

of depth log Z (n) each. Let v = D (n) / log Z (n). The jth slice comprises levels j log Z (n),

(j+l) log Z(n) - 1, for 0 5 j -< v - 1. Let (j) denote the jth slice.

R will extract circuit tree descriptions of each slice from matrix G, starting with X(v -1).

We introduce a simple procedure COLLAPSE, which R will use to extract information

from matrix G. Procedure COLLAPSE (a, z) takes as input the value a, where #a =

o , 2_ 1 cc, • xo, and returns the value 13, where #13 = 1 ... 13 130, and bits 13k =

Z-I

V a,,,,, for 0<_ k <z - 1, and 13i =0ifi *kz.

Lemma 9.1.5. R can perform COLLAPSE (a, z) in 0 (log z) time.

Proof. Let temp 1 = a. For i =0 ..., log z - 1, R performs the following steps:

tempi (1) 4- tempi ,L 2i

tempi+, 4- tempi V tempi(l).

Z-1
Let 41denote temp logz. At this point #V = tz2_l 4, • V0, where W/, = V abk,+. Now weJ=o

mask away all bits Vi for i * kz. This takes 0 (log z) time, and the result is 3. 0

Matrix G is stored in a single register in row major order. We view the contents of this

register as both a matrix of discrete elements and as a single bit string. We call the portion

of a matrix comprising one row a box. We call the portion of a box containing one element

of a row a slot.

I

118

To extract CT(-(i)), R will isolate the portion of matrix G that describes the circuit

trees for each output from slice 1(i). We will call this matrix a slice matrix. Let S (i) denote

the slice matrix for 1(i). For each gate g at the output of £(i), S (i) specifies each ancestor of

gate g at the top of 1(i).

Let out denote the name of the output gate of F,. Nonzero entries in row out of G

correspond to the ancestors of gate out at distance log Z (n); that is, the gates at the boundary

between Z(v-1) and Z(v-2). To extract CT(E(v -1)), R masks away all but row out of G.

Let S(v-1) denote this value.

In general, assume that we have S (i +1), and we want to compute S (i). First, R

computes the OR of all boxes of S(i+l). Let TI(i) denote this value. R computes (x(i) =

COLLAPSE (71(i), Z(n)) in 0(log Z(n)) time. Bit jZ 2(n) + kZ(n), 0 S j, k <_.Z (n) - 1, of

#a(i) is 0 (1) if slot k of box j of S (i +1) contains all O's (at least one 1). Let Cab(i) denote bit

b of #ca(i). We will use a(i) to select the rows of G that correspond to nonzero slots of

S(i+1). Next, R computes a(i) = SPREAD (#a(i), Z(n)) in 0 (log Z(n)) steps. This leaves

bit akz(n)(i) at position kZ 2 (n) of #a(i); that is, it aligns the bit of #cc(i) indicating whether

or not slot m contains a 1 with box m of G. Now, R computes 0(i) = FILL (0(i), Z 2 (n)), and

#O(i) has I's in the boxes of G that correspond to ancestors of out at distance log Z(n).

R computes S (i) + 0(i) A G. Thus, the boxes of G that correspond to slots of S (i +1)

that contain all O's are masked away in S(i). Each nonzero slot of S(i) indicates a gate at the

top boundary of Z(i).

Stage 4: Running the slices on the input. At this point, for 0 5 i 5 v - 1, R has computed

S (i). Each S (i) contains a description of CT(Z(i)). (Note: CT(F,(i)) is a collection of

circuit trees, one for each output of Y(i).) In Stage 4, R runs each CT(Z(i)) in sequence. R

119

begins by manipulating the input o to be in the form necessary to run on CT (1(0)). The

input w to F is 2n bits long (n input bits and their complements).

We describe how R runs the circuit by slices. We must take the output y(i) from Z(i)

and convert it into the form needed for the input to CT(I(i+1)). We let w(i) denote this

input.

We must initially consider input (o as a special case. Without loss of generality assume

that the input gates are numbered 1..., 2n. We view co as padded with O's to be Z (n) bits

long. R computes g(O) SPREAD (# (o, Z(n)). The bits of co are Z (n) bits apart in 4(0), one

per slot in a single box.

We now define a function COMPRESS, the inverse of SPREAD. The function

COMPRESS(03, y), where # 3 = P, -1 " • 13 00, returns the value a, where #z =

3(x-1)y 3(x-2)y .3. 130, in 0 (log x) time. In general, we have S (i) and W/(i -1). The output

W(i-1) from a slice ,(i-1) is in the form of isolated bits, one for each box corresponding to

an output from 7(i -1). R computes g(i -1) = COMPRESS (,4(i -1), Z (n)), then builds

(i - 1)= FILL (g.(i-1), Z(n)) in O (log Z(n)) time. The result ig(i-1) has Z(n) output bits

from xV(i -1). These are Z (n) bits apart, one per slot in a single box. Now R concatenates

Z(n) copies of Wf (i-1); call this V(i-1). Each element isZ 2 (n) bits long, the length of a

box. R computes S(i)' = S(i) A Nc(i-l); hence, #S(i)' has a 1 in position

jZ 2(n) + kZ (n) + 1 if gate j is at the bottom of I(i), gate k is the I th ancestor of j at the top

of I(i), and the input to gate k is a 1. R ORs all slots in each box together in 0 (log Z (n))

steps, producing bit vector wo(i). By our construction, co(i) is the input to CT (I(i)). Recall

that CT(I(i)) consists of alternating layers of AND and OR gates. We run CT(Z(i)) on

U input co(i) in 0 (log Z (n)) steps. Let tempo = w(i). R performs the following for m = 0, 1,

I log Z (n) - 1.

I

120

temp. (1) +-- temp.. 2m

tempm A temp, (1), if m is even
tempm+- tempn V tempm (1), if m is odd

Let /i) = temp log Z(n). At most O (Z (n)) bits of # W(i) are the output values of CT (Z(i)) on

input o(i).

It takes time 0 (log Z (n)) to fix the output from one slice to go into another slice and

time O (log Z (n)) to run a slice. Since there are D (n) / log Z (n) slices, it takes time

O (D (n)) to run a circuit on the input, given the distance log Z (n) ancestor matrix G.

Theorem 9.1. Let C = {CI, C2, • -)be a family of VM-uniform, bounded fan-in circuits

of size Z (n) and depth D (n) recognizing language L. There exists a RAM[T,,] R that

recognizes L in time 0 (D (n) + log Z (n) loglog Z (n)).

Proof. We construct R by the method described above. For fixed n, R simulates C', via Fn

in 0 (log Z (n) loglog Z (n)) time to create matrix G, then 0 (D (n)) time to run F,, on input

co, given G. Thus, the overall time is O (D (n) + log Z (n) loglog Z (n)) steps. 0

9.3. Simulation of PRAM[T,,] by RAM[T,,,

Using Theorem 9.1, we now simulate a PRAM[T,,1 by a RAM[!,I,. Recall that we

simulated a PRAM[T,I,] by a family of log-space uniform unbounded fan-in circuits UC

according to the simulation by Stockmeyer and Vishkin (1984) (Lemma 6.2.2), then

simulated this by a family of log-space uniform bounded fan-in circuits BC (Lemma 6.2.3).

In this manner, we showed that a family BC of bounded fan-in circuits of depth 0 (T 3(n))

and size 0 (T(n)2Tr n)) can simulate time T(n) on a PRAM[IJ]. We need only establish

that BC is VM-uniform to give a 0 (T3(n)) time simulation of a PRAM[T,,I] by a

RAM[,,1.

121

Definition. A PRAM is uniform if all processors execute the same program.

Lemma 9.2.1. Let C = {C1 , C2, ...) be the family of unbounded fan-in circuits described by

Stockmeyer and Vishkin (1984) that simulates a uniform PRAM (Theorem 2.1). C is VM-

uniform.

Proof. Stockmeyer and Vishkin present the simulation of a nonuniform PRAM by a

nonuniform family of circuits. Since we study a uniform PRAM, the program size is

constant, and the simulating family of circuits is log-space uniform.

Fix a uniform PRAM Y and an input size n. The simulating circuit C, comprises T (n)

identical time slices. Each time slice corresponds to a time step of Y. Each time slice

comprises P (n) cartons of gates, one for each processor, and a block of gates, [Update-

Common], handling updates to common memory Ench carton comprises 13 blocks of gates

handling various functions as indicated by their names: [Compute-Operands], [Add], [Sub],

[Local-Read], [Common-Read], [=-Compare], [<-Compare], [Compute-Address-of-Result],

[Select-Result], [Update-Instruction-Counter], [Local-Change?], [Common-Change?], and

[Update-w -Bits-of-Local-Triples]. The size of each time slice of C, is

O (P (n)[T (n.)(n +T (n)) + (n +T (n))3 + (n +T (n))(n +P (n)T (n))J), and the total size of C,, is

T (n) times this amount.

The general form of a gate name is specified in Figure 9.2.

Let Z (n) denote the size of Cn. It is clear from the description of the blocks given by

Stockmeyer and Vishkin that each block is VM-uniform and that the interconnections

between blocks are regular. Thus, to prove that C is VM-uniform, we present an algorithm

that a RAMITl 1] R can run to test the connectivity of all pairs of gates in 0 (log Z (n)) time.

I

II

122

t . I I
time step processor block gate name within block

number number

specifies carton

Figure 9.2. Gate name in C,.

Let g denote a gate name. Let slot A denote the portion of #g specifying the time step.

Let slot B denote the portion of #g specifying the processor number. Let slot C denote the

portion of #g specifying the block number. Let slot D denote the portion of #g specifying

the gate name within the block. Let sconi (g) denote the contents of slot i of #g.

The inputI is the concatenation of all pairs (g, h), where g, h e (0, 1, ... , Z(n)°(1)}.

Let the portion of that register holding the j th pair be called pair(j). R initially builds four

masks: maskA , maskB, maskc, and maskD in 0 (log Z (n)) time, such that #maski has I's in

slot i of every pair.

In the algorithm below, R compares parts of #g and #h for all pairs (g, h)

simultaneously. R separates the pairs for which the comparison is true from the pairs for

which the comparison is false by building an appropriate mask in time 0 (log Z (n)). For all

pairs (g, h):

1. Using maskA, test whether scoiA (g) = sconA (h).
Mask away the unequal pairs in I. Call the resulting value IA. Specifically, #IA
comprises pairs (#g, #h) for which scoiA (g) = SCOiA (h), and O's at the positions of
pairs (g', h') for which sconA (g") * sconA (h").
Mask away the equal pairs in I. Call the resulting value IX.

2. Test whether sconA (g) = 1 + sconA (h) in Ii. Mask away those pairs for which

123

sconA Qg) 1 + sconA (h). Call the resulting value IA+. Mark the pairs Q, h) for
which SCOnA (g) * 1 + scoriA (h) with a 0 to indicate that h is not an input to g.
(Gate h is neither in the same time slice as g nor in the preceding time slice.)

3. Using maskB, test whether scon (g) = scong (h) in IA.

Mask away the unequal pairs. Call the resulting value 'B.

Mask away the equal pairs. Call the resulting value 1i.

4. Using maskc, test whether sconc (g) = sconc (h) in 'B.
Mask away the unequal pairs. Call the resulting value lc
Mask away the equal pairs. Call the resulting value Ij.

5. Using maskD on Ic, isolate sconD (g) and generate the names of the leftmost
and rightmost inputs to gate g.

6. Test whether sconD (h) in 1c is contained in the range specified by the names of
g 's leftmost and rightmost inputs.
If so, then mark pair (g, h) with a 1 to indicate that h is an input to g.
If not, then mark pair (g, h) with a 0 to indicate that h is not an input to g.

7. (slot C not equal) Using mask8 on test whether the block containing h is an
input to the block containing g.
If not, then mark pair (g, h) with a 0.
Mask away the pairs for which the test is false. Call the resulting value IBJ.

8. Using maskD on IBC, test whether h is an input to g between blocks. (That is,
test whether h is an input to g and where g and h are in different blocks.)
If so, then mark pair (g, h) with a 1.
If not, then mark pair (g, h) with a 0.

9. (slot B not equal) Using maskB on Ii, test whether g is in the block [Update-
Common].
If not, then mark pair (g, h) with a 0. (Gates g and h are in cartons belonging to
different processors.)
If so, then test whether h is in a block that feeds into [Update-Common]. If not,
then mark pair (g, h) with a 0. Mask away those pairs in Ii that fail the test. Call
the resulting value IBf.

10. (sconA (g) = I + sconA (h)) Using maskB on IA+, test whether outputs from the
block containing h are inputs to the block containing g.
If not, then mark pair (g, h) with a 0.
Mask away those pairs in 'A + that fail the test. Call the resulting value IBA +, and
OR this with IBif. Call the resulting value IB.

1I. Using maskD on IB+, test whether h is an input to g between blocks. (That is,
test whether h is an input to g and where g and h are in different blocks.)

I

124

If so, then mark pair (g, h) with a 1.
If not, then mark pair (g, h) with a 0.

Note that the algorithm has a constant number of steps, with no loops. Also note that each

step can be executed in time 0 (log Z(n)). Thus, C is VM-uniform. 0

Let BC' = (BC', BC, I be the family of bounded fan-in circuits that simulates the

family C of unbounded fan-in circuits described by Stockrneyer and Vishkin (1984)

(Theorem 2.1). The depth of BC, is O (T (n)(log P (n)T (n))), and the size is

O(P(n)T(n)[T(n)(n+T(n)) + (n+T(n))3 + (n+T(n))(n+P(n)T(n))]).

Lemma 9.2.2. BC is VM-uniform.

Proof. Fix an input length n. By Lemma 9.2.1, C is VM-uniform. The fan-in of any gate

in Cn is at most 0 (nP (n)(n + P (n)T(n))). We construct BC' from C by replacing each

gate of Cn with fan-in f by a tree of gates of depth log f. Thus, each gate in Cn can be

simulated by a tree of gates in BC,, of depth at most 0 (log P (n)T(n)). Hence, BC,: is VM-

uniform. C

Theorem 9.2. For all T(n) .log n and P (n) < 2T(n), PRAM -TIME (T(n))

RAM [t,4I-TIME (T(n) log P (n)T(n)).

Proof. By Lemma 9.2.2, BC', the family of bounded fan-in circuits that simulates a PRAM,

is VM-uniform. By Theorem 9.1, a RAM[tj- can simulate BC' in time

O(T(n)logP(n)T(n)). C

Lemma 9.3.1. Let UC = (UC 1, UC 2, ...) be the family of unbounded fan-in circuits

described in Lemma 6.2.2 that simulates a uniform PRAM[IT,1I. UC is VM-uniform.

a
125

!
Proof. By Lemma 9.2.1, C is VM-uniform. UC has the same form as C, except in the

blocks labeled [update common], handling updates to common memory. We reduce the

inputs to the gates in this block because of restrictions on the processors that may

simultaneously write a cell. It is easy to compute the processors that may simultaneously

write a cell, so C is also VM-uniform. 0

Lemma 9.3.2. Let BC = (BC 1, BC 2, ...) be the family of bounded fan-in circuits described

in Lemma 6.2.3 that simulates a uniform PRAM[T,L,. BC is VM-uniform.

Proof. Fix an input size n. BC, is constructed from UC, by replacing each gate with fan-in

f by a tree of gates of depth log f. A gate name in BC, is the concatenation of the

unbounded fan-in gate name in UCn and the name of the gate within the bounded fan-in tree

that replaces the unbounded fan-in gate (Figure 9.3). We prove VM-uniformity by the same

algorithm given in the proof of Lemma 9.2.1, with modifications to test slot E, the portion of

the gate name giving the gate name within the tree of depth log f. By this algorithm, we see

that the family BC of bounded fan-in circuits is VM-uniform since, by Lemma 9.3.1, UC is

VM-uniform. r-

gate name in UC,, gate name in tree
of depth log f

Figure 9.3. Gate name in BC,,

126

Theorem 9.3. For all T(n) _ log n, PRAM [T,$]-TIME (T(n))

RAM [T,,I-TIME (T 3(n)).

Proof. By Lemma 6.2.3 and Lemma 9.3.2, for each n, every language recognized by a

PRAM[?,[1 in time T(n) can be recognized by a VM-uniform, bounded fan-in circuit BC,,

of depth O(T 3(n)) and size O(T 8 (n)4T2(n)). By Theorem 9.1, there exists a RAM[T,L]

running in time 0 (T 3 (n) + (log (T8 (n) 4 T'()))(loglog (T 8 (n) 4 T <n)))) = 0 (T 3(n)) that

simulates BCn. .

Corollary 9.3.1. PRAM [t,,]-PTIME = RAM [T,,]-PTIME.

Combining Theorem 9.2 with Theorem 6.1 (PRAM [TA.-TIME (T(n)) a

PRAM -TIME (T 2(n))) implies

PRAM [1,41-TIME (T (n)) c RAM [IAI-TIME (T 4 (n)).

The simulation of Theorem 9.3 is more efficient.

9.4. Simulation of MRAM-Uniform Circuit by RAM[*]

In this section. we adapt the simulation of a VM-uniform circuit by a RAM[TA]

(Section 9.2) to the case of a simulation of an MRAM-uniform circuit by a RAM[*].

Theorem 9.4. Let MC = {MC 1, MC 2 , • - -) be a family of MRAM-uniform, bounded fan-

in circuits of size Z (n) and depth D (n) recognizing language L. There exists a RAM[*] R

that recognizes L in time 0 (D (n) + log Z (n) loglog Z (n)).

Proof. Without loss of generality, assume that R has two memories: memI and meM 2 R

performs the simulation described in Section 9.2, using a precomputed table of shift values in

mem 2 To perform a left shift, such as temp' +- temp i, R performs temp' +- temp* 2) To

perform a right shift by j bits, R shifts all other values in mem I left by j bits, then notes that

!
127

the rightmost j bits of all registers are to be ignored (Hartmanis and Simon, 1974). This

takes constant time because, by reusing registers, R uses only a constant number of registers

in mem 1. In 0 (log Z(n)) time, R computes the values 2 Z(n) and 2 Z2(n), since Z(n) and

Z 2(n) are the basic shift distances. In the course of the computation, R will perform shifts

by Z (n)2i, 0 < i < log Z (n), for each value of i. R computes the necessary shift value on

each iteration from the previous value.

Thus, the simulation by R takes the same amount of time as the simulation described in

Section 9.2: O (D (n) + log Z(n) loglog Z (n)). 0

9.5. Simulation of PRAM[*] by RAM[*]

In this section, we simulate a PRAM[*] by an MRAM-uniform, bounded fan-in circuit

family, then simulate this circuit family by a RAM[*]. We also simulate a basic PRAM by a

RAM[*].

Lemma 9.5.1. Let C = {C 1, C 2, ...) be the family of unbounded fan-in circuits described by

Stockmeyer and Visltkin (1984) that simulates a uniform PRAM (Theorem 2.1). C is

MRAM-uniform.

Proof. The lemma follows by the proof of Lemma 9.2.1. 0

Let PC = (PC 1, PC2, ...) be the family of bounded fan-in circuits that simulates the

family C of unbounded fan-in circuits described by Stockmeyer and Vishkin (1984). For a

fixed input size n, the depth of PC, is 0 (T (n) log P (n)T (n)) and the size is

0 (P (n)T(n)[T(n)(n+T(n)) + (n--T(n)) 3 + (n+T(n))(n+P (n)T(n))]).

Lemma 9.5.2. PC is MRAM-uniform.

128

Proof. By Lemma 9.5.1, C is MiRAM-uniform. By the proof given for Lemma 9.3,2, PC is

MRAM-uniform. 0

Theorem 9.5. For all T(n) >_ log n and P (n) _> 2 T(n), PRAM-TIME (T (n))

RAM [*]-TIME (T (n) log P (n)T (n)).

Proof. By Lemma 9.5.2, PC, the family of bounded fan-in circuits that simulates a PRAM,

is MRAM-uniform. By Theorem 9.4, a RAM[*] can simulate PC in time

O(T(n) logP(n)T(n)). 0"

Let BC denote the family of bounded fan-in circuits described in the proof of Lemma

4.2.2 that simulates a PRAM[*] in depth 0 (T 2(n)) and size 0 (n 2 T 2 (n) 8 T(n) log T(n)).

We construct a family of bounded fan-in circuits BC' from BC. Fix an input size n. The

circuit BC,, is exactly the same as the circuit BC,, except that BC, uses a different

multiplication block for reasons of MRAM-uniformity. Insert carry-save multiplication

blocks in BCn'. Each block has depth 0 (T(n)) and size 0 (n24T(n)). Thus, BC,, has depth

O (T 2(n)) and size 0 (n 2 T 2 (n) 8 T(n) log T(n)).

Lemma 9.6.1. For each n, every language recognized by a PRAM[*] R in time T(n) with

P (n) processors can be recognized by the bounded fan-in circuit BCn of depth 0 (T 2 (n)) and

size 0 (n 2 T 2(n) 8 T (n) log T(n)).

Proof. The proof is similar to that given for Lemma 4.2.2, 0

Lemma 9.6.2. BC' is MRAM-uniform

Proof. By Lemma 9.5.1, C is MRAM-uniform By a proof like that given for Lemma 9.3.2,

BC' is MRAM-uniform. 0

I
129i

Lemma 9.6.3. For each n, every language recognized by a PRAM[*] Y in time T (n) with

I P (n) processors can be recognized by a MRAM-uniform, bounded fan-in circuit BC, of

depth 0 (T2(n)) and size 0 (TI°(n) P 4(n) 16 T(n)).

Proof. Fix an input length n. By Lemma 9.6.2, a bounded fan-in, MRAM-uniform circuit

BCn of depth 0 (T2(n)) and size O (T10(n) P4 (n) 16 T(n)) can simulate Y. [

Theorem 9.6. For all T (n) 2! log n, PRAM [*]-TIME (T (n)) c RAM [*]-TIME (T 2(n)).

Proof. By Lemma 9.6.3, a PRAM[*] running in time T(n) with P (n) processors can be

simulated by a bounded fan-in, MRAM-uniform circuit BC,' of depth 0 (T2(n)) and size

0 (T 10(n) P 4(n) 16 T(n)). By Theorem 9.4, a RAM[*] can simulate BC,' in time 0 (T 2(n)).

0

9.6. Simulation of PRAM[*,+] by RAM[*,+]

In this section, we simulate a PRAM[*,+] by a RAM[*,-].

Theorem 9.7. For all T (n) > log n, PRAM [* ,.-]-TIME (T (n)) a

RAM [* ,-I-TIME (T 3(n)).

Proof. By the proof of Theorem 5.1, a PRAM Z can simulate Y in time 0 (T2(n)) with

O (P 2 (n) T 2(n) log T(n) n2 4T(n)) processors. By Theorem 9.5, a RAM[*], hence a

RAM[*,+], can simulate Z in time 0 (T 3(n)). 0

I Note that the family DC of bounded fan-in circuits in Lemma 5.2.1 simulates the

PRAM[*,+] in depth O (T2(n) log T(n)). We expect to show that DC is MRAM-uniform by

proving that the division circuit of Shankar and Ramachandran (1987) is MRAM-uniform.

IThis would lead to a 0 (T2(n) log T(n)) time simulation of a PRAM[*,+] by a RAM[*,-].

We are currently working on this problem.I
!

130

As we noted in Chapter 5, a time-bounded RAM[-I is much weaker than a time-

bounded PRAM[e]. Therefore, a simulation of a PRAM[] by a RAM[I would be highly

inefficient.

Ji I
131

Chapter 10. Alternatives

The PRAM is a flexible model, and many researchers have varied particular aspects of

the model. Variations have arisen in whether to allow concurrent writes and, if so, in the

rules governing concurrent writes, in whether to allow concurrent reads, in the amount of

local memory allotted to each processor, in the use of shared memory, and in the mechanism

for processor activation. Indeed, the focus of this thesis is relating various instruction sets in

the PRAM model.

In this chapter, we discuss some of these variations and study their effects on our

results.

* Write conflict resolution

We allow our PRAM concurrent read and concurrent write (CRCW) ability, resolving

write conflicts by giving priority to the lowest numbered processor attempting to write. Fich

et at. (1985) called this model the PRIORITY model. A number of other conflict resolution

schemes exist: COMMON, in which all processors attempting to write must write the same

value; ARBITRARY, in which an arbitrary processor succeeds in its write attempt;

COLLISION, in which a special collision symbol appears in a cell if two or more processors

attempt to write that cell simultaneously; and TOLERANT, in which the contents of a cell do

not change in the event of a write conflict. PRIORITY is the strongest scheme. For a

discussion of detailed relationships among these models, see Kucera (1982), Fich et al.

(1985), Li and Yesha (1986), Fich et al. (1987), Grolmusz and Ragde (1987), Fich et al.

(1988a), and Fich et al. (1988b).

132

*CRCW vs. EREW

We may restrict the model by disallowing concurrent writes, giving a concurrent read,

exclusive write (CREW) version, or we may further restrict the model by disallowing

concurrent reads, giving an exclusive read, exclusive write (EREW) version. For

relationships among these restrictions, see Eckstein (1979), Vishkin (1983a), Snir (1985),

Cook et al. (1986), Reischuk (1987), and Parberry and Yuan (1987).

In the preceding chapters, we presented relations among CRCW PRAMs with various

instruction sets. We now prove similar results for EREW PRAMs, but with slightly higher

time bounds, by converting the simulations by bounded fan-in circuits to simulations by

EREW PRAMs.

Lemma 10.'.1. Let B (B 1, B 2 , • be a log-space uniform family of bounded fan-in

circuits of depth D (n) < log n that accepts language L. There exists an EREW PRAM EP

that runs in time 0 (D (n)) that accepts language L.

Proof. The proof is given in Karp and Ramachandran (1988). 0

First, we simulate an EREW PRAM[*].

Theorem 10.1. EREW-PRAM [*]-TIME (T (n)) g EREW-PRAM -TIME (T 2 (n)).

Proof. The theorem is true by Lemmas 4.2.2 and 10.1.1. 0

Next, we simulate an EREW PRAM[*,+] and an EREW PRAM[+],

Theorem 10.2. EREW-PRAM [*, +]-TIME (T (n)) g

EREW-PRAM -TIME (T 2 (n) log T (n)).

Proof. The theorem is true by Lemmas 5.2.2 and 10.1.1. 0

i I
133

]1
Lemma 10.3.1. An EREW PRAM can compute the quotient of two x bit operands in

0 (logx loglog x) time.

Proof. The lemma is true by Lemmas 5.2.1 and 10.1.1. 0

Lemma 10.3.2 states the key to converting CRCW simulations into EREW simulations.

Lemma 10.3.2. Let CR be a CRCW PRAM running in T(n) time with P (n) processors, and

at most Q (n) processors simultaneously read or write a single cell. An EREW PRAM ER

can simulate CR in 0 (T(n) log Q (n)) time.

Proof. A concurrent read or write by Q (n) processors of CR takes 0 (log Q (n)) time on ER

by the method described by Vishkin (1983a), when we replace Batcher's sort with the faster

parallel merge sort of Cole (1986). 0

We must modify the Associative Memory Lemma to apply to EREW PRAMs.

Lemma 10.3.3. (EREW Associative Memory Lemma) Let op c {*, T, ,1. For all T (n) and

P (n), every language recognized with P (n) processors in time T(n) by an EREW

PRAM[op] ER can be recognized in time 0 (T(n) log (P (n)T(n))) by an EREW PRAM[op]

ER' that accesses only cells with addresses in 0, ..., 0 (P (n)T(n)).

Proof. At most P (n)T(n) processors simultaneously read or write a single cell in the

simulation presented in Chapter 3 in the proof of the Associative Memory Lemma. By

Lemma 10.3.2, each step of this simulation can be simulated by ER' in O (log (P (n)T(n)))

t steps. 0

1I Theorem 10.3. EREW-PRAM [+]-TIME (T (n)) EREW-PRAM-TIME (T 2 (n)).

Proof. An EREW PRAM[+] can generate numbers only up to n + T(n) bits long; hence, by

Lemma 10.3.1, an EREW PRAM takes 0 (log2 (n +T (n))) time to compute the quotient of

II

II

134

two such numbers. The EREW PRAM simulates the EREW PRAM[-] through Lemma

!0..s.3, and the memory accesses -f Lemr-a 10.3.3 dominate the computation time of each

step. Hence, by Theorem 5.3 and Lemma 10.3.3, an EREW PRAM can simulate an EREW

PRAM[W running in time T(n) in 0 (T2(n)) steps. 0

Now we simulate an EREW PRAM[T,,1.

Theorem 10.4. EREW-PRAM [T, ,I]-TIME (T (n)) c EREW -PRAM -TIME (T 3 (n)).

Proof. The theorem is true by Lemmas 6.2.3 and 10.1.1. 0

Finally, we simulate EREW PRAMs with probabilistic choice.

Theorem 10.5. Let op ({, { * , { *,), {t,,[, , t *,t,,.,} . Let R be a prob-RAM[op] with

time bound T(n) that makes R (n) random choices. There is a deterministic EREW

PRAM[op] ED that simulates R in 0 (T (n)) time with 2 R (,) processors.

Proof. The theorem follows exactly by the proof of Theorem 8.4. 0

As in Chapter 8, we extend the simulation of a sequential machine to a simulation of a

parallel machine. Again, we will need two proofs: one for PRAMs with enhanced

instruction sets and one for basic PRAMs.

Theorem 10.6. Let ope {I *, (*,+ , [T,), {*,T,, }. Let EP be an EREW prob-

PRAM[op] with time bound T(n), processor bound P (n), and memory bound S (n) that

makes R (n) random choices. There is a deterministic EREW PRAM[op] ED that simulates

EP in time 0 (R (n) + T(n) log P (n)) with P (n)2R(n) processors.

Proof. The proof follows fe proof of Theorem 8.5, with a modification made for the

exclusive read and exclusive write restrictions. The modification is in reading C, Up to

P (n) processors may wish to read ,, at each step, taking 0 (log P (n)) time by Lemma

rI
135

10.3.2. This, however, is the same amount of time required for sorting the write requests, so

the time per step remains 0 (log P (n)). Thus, the overall time for ED to simulate EP is

O(R(n) +T(n) log P(n)) steps. 0

Theorem 10.7. Let EP be an EREW prob-PRAM with time bound T (n), processor bound

P (n), and memory bound S (n) that makes R (n) random choices. There is a deterministic

EREW PRAM ED that simulates EP in time 0 (R (n) + T (n) log P (n)) with P (n) 2R (n)

processors.

Proof. The proof is that given for Theorem 10.6, with the exceptions listed in the proof of

Theorem 8.6. 0

We also present an EREW version of the Markov chain proof.

Lemma 10.8.1. Let A and B be zxz integer matrices stored one element per cell in the

shared memory of an EREW PRAM[*] E. E can compute their product C = AB in 0 (log z)

time.

Proof. In 0 (log z) steps, E activates z 3 processors, assigning z processors to each element

of matrix C. For each element C (g, h) and all I < i 5 z, the ith of its z processors computes

A (g, i) * B (i, h). Since each element of A and each element of B are read by z processors,

E takes 0 (log z) time to read the elements. Next, also in 0 (log z) time, the processors

assigned to each element of C add their products, writing the sum into the cell allocated to

that element. 0

As a preliminary step, we must describe a version of the Associative Memory Lemma

for EREW prob-PRAMs.

Lemma 10.8.2. (Associative Memory Lemma for EREW prob-PRAMs) Let op *, +, 1>

.1}. For all T(n), P (n), and S (n), every language recognized in time T(n) with P (n)

136

processors using at most S (n) cells by an EREW prob-PRAM[op] EP can be recognized in

time 0 (T (n) log (P (n)T (n))) by an EREW prob-PRAM[op] EF' that accesses only cells

with addresses in 0, ... , 0 (S (n)).

Proof. By Lemma 8.7.1, a CRCWprob-PRAM[op] CP' running in time O(T(n)) with

O (P 2 (n)T (n)) processors recognizes every language recognized by EP. By Lemma 9.1.1,

an EREW prob-PRAM[op] EP' simulates each step of CP' in time O (log(P (n)T (n))). 0

Theorem 10.8. Let EP be an EREW prob-PRAM[*,+] with time bound T (n), processor

bound P (n), memory bound S(n), integer bound 1(n), and program length k. Then there is a

deterministic EREW PRAM[*,] ED that simulates EP in time

O ((P (n) + log I (n)).S(n)" log(T(n))) with 0 ((kP(n)l(n))3S(n)) processors.

Proof (sketch). Let EP' simulate EP according to Lemma 10.8.2. Then EP' has time bound

0 (T (n) log (P (n)T (n))), processor bound 0 (P (n)S (n)), memory bound S (n), and integer

bound l(n). By Lemma 10.8.1, an EREW PRAM[*,-] can simulate ER' according to the

simulation described in the proof of Theorem 8.7 in the same time. Since P (n) < 2T(n),

O (log (T(n) log (P (n)T(n)))) = 0 (log T(n)). 0

* Input convention

PRAM definitions sometimes differ in the input convention. The input in our model is

a single integer n bits long in c (0). We have the special instruction r (i) *.- BIT(j), which

places the rcon (j)th bit of the input in r (i). Two other input styles are used: (1) the input

consists of n bits, one each in c (0), c (1), ..., c (n -1); (2) tht. input consists of r integers, one

each in c (0), c (1), ..., c (r-1), and the sum of the lengths of these integers is n. In 0 (log n)

time, our PRAM can convert its input to either of the other styles by activating one processor

for each bit position, then using the BIT instruction to read individual bits of the input. Note

137

that without the BIT instruction, the conversion would take 0 (n) time on the basic PRAM

* because the PRAM must build bit masks n bits long to read individual bits of the input.

gSimilarly, the basic PRAM takes 0 (n) time to convert from either of the other styles to our

input style. A PRAM[*I or PRAM[t,4,] can convert the input from one style to another in

O (log n) time.

* Local memory

We allow each processor infinite local memory. This definition was convenient, but not

necessary, since a PRAM in which each pic,:essor has a constant number of local registers

can simulate our PRAM with only a constant factor increase in time. We present two

theorems to establish this fact, one for basic PRAMs and one for PRAMs with enhanced

instruction sets.

Theorem 10.9. Let Z be a PRAM running in T(n) time with P (n) processors in which each

processor has infinite local memory. A PRAM R in which each processor has only 4 local

registers can simulate Z in 0 (T(n)) time with P (n) processors.

Proof. We allow R three separate shared memories: mem 1 , mem 2, and meM 3. R uses

mem I to simulate the shared memory of Z, mem 2 to simulate the local memories of Z, and

meM 3 to store an address table. In mem 2, R sets aside a block of 0 (2T(n)) cells for each

Iprocessor of R to use as the local memory of the corresponding processor of Z. For

gsimplicity, assume the size of each block is 2 T(n) . R will access c 2(m 2 T(n) + k) for every

access to r,(k) of Z.

I R activates P (n) processors in 0 (log P (n)) time. These processors make an address

table in mem 3, storing m 2T(n) in cell m, for I < m < P (n). This takes O (T(n) + log P (n))

time. R uses this address table to speed access to the blocks of cells in mem 2 .I
I

138

Let Pm be the processor of R that corresponds to processor Pg of Z. When Pm is

activated, it computes g ard ,',ites g in rm(O).

In a general step ot Z, suppose processor Pg executes r(i) (-- r(j) 0 r(k). To simulate

the read of the contents of r,(j), the corresponding processor Pm of R writes j in rm(2),

copies con 3 (g) into rm (1), and adds j to rconm (1). Pm then accesses mem2 (g 2 T(n) +j)

indirectly through r,(l). Pm performs the same actions to read the contents of rg(k), except

using registers 2 and 3 instead of I and 2. Now Pm performs r(3) -- r(1) 0 r(2). R

simulates the write in rg(i) just as described above.

R uses 0 (T(n) + log P (n)) = 0 (T(n)) initialization time and constant time to simulate

each step of Z. Thus, R simulates Z in 0 (T(nj) time with P (n) processors. Each processor

Pm of R uses only four registers rm(O), • • , r,,(3). 0

Theorem 10.10. Let op Q {*, T, $). Let Z be a PRAM[op] running in T(n) time vk. h P (n)

processors in which each processor has infinite local memory. A PRAM[op] R in which each

processor has only 4 local registers can simulate Z in 0 (T(n)) time with P (n) processors.

Proof. We allow R two separate shared memories: mem I and mem 2. R uses memI to

simulate the shared memory of Z and mem 2 to simulate the local memories of Z. R will

access c2 (kP(n) + m) for rm(k) of Z. If * 4top, then assume without loss of generality that

P (n) is a power of 2; this way R can perform shifts to perform the multiplications specified

below.

R activates processors as specified by the program of Z, so processor Pn of R simulates

processor Pm of Z. Pm of R stores P (n) (or log P (n) if R does not have multiplication) in

rm(1). In a general step of Z, suppose processor Pm executes r (i) (-- r (j) 0 r (k). To

simulate the read of the contents of r (j), the corresponding processor Pm of R writes j in

139I
r,m(2), multiplies rconm(2) by P (n), then adds m to the product. (By definition, Pm has m in

ro(m).) Pm then reads mem 2 (jP (n)+m) indirectly through rm(2), writing con 2(jP (n)+m) in

rm (2). Pm performs the same actions to read the contents of r (k), except using register 3

I instead of 2. Now Pm performs r(3) <-- r(1) 0 r(2). R simulates the write in r(i) just as

described above.

R uses constant time to simulate each step of Z. Thus, R simulates Z in 0 (T(n)) time

$ with P (n) processors. El

I . Operations in shared memory

We restricted the instruction set so that the only operations permitted on shared memory

are indirect reads and writes. Again, this definition was convenient, but not necessary, since

such a PRAM can simulate a PRAM allowing all operations in shared memory with only a

small constant factor increase in time.

Theorem 10.11. Let Z be a PRAM running in T(n) time in which all instructions can be

performed in either shared or local memory. A PRAM R allowing only indirect reads and

writes to shared memory can simulate Z in 0 (T(n)) time.

Proof. For all m, processor Pm of R simulates processor P, of Z. At time t, suppose Pm cf Z

executes c (i) +- c (j) 0 c (k). Then Pm of R copies con (j) and con (k) into its local

memory, performs 0, then writes con (j) 0 con (k) in c (i). Thus, R simulates each step of

Z in constant time. 0!
e Processor activation

A common method of processor activation is to assume that all P (n) processors are

3 initially active. Bounds for arbitrary P (n) with this method of processor activation can be

I
I

-. c - .

140

derived from our simulations because we presented all simulations for arbitrary P (n), then

fixed P (n) S 2T(n) in deriving the final bounds.

The final area of alternative definitions is the FORK operation. Recall that we defined

the instruction FORK label 1, label 2 as executed by Pg to cause Pg to halt and activate P 2g

and P 2g .0, setting their program counters to label 1 and label 2, respectively. Fortune and

Wyllie (1978) defined FORK label as executed by Pg to activate the lowest numbered

inactive processor Pm, clear the local memory of P, copy the contents of the accumulator of

P, in the accumulator of P,,, and set the program counter of P.. to label. Let us call this

operation FW -FORK. We now present a lemma to establish that our simulations all work

with the same bounds with FWY -FORK in the place of FORK.

The main difference between FORK and FW -FORK is in the processor number of the

activated processor(s). In our simulation, the processor number is important in establishing

the relationship between a primary and its secondary processors. Recall the Activation

Lemma (Chapter 3): for a primary processor Pg with a secondary processors, the secondary

processors are numbered k + g, for k = 1.... Further, each secondary processor Pg+k

computes k in order to assign itself to an item indexed by k in the computation. With

FW -FORK, the relationship between processor numbers of primary and secondary

processors is different: with it primary processors and a secondary processors, the secondary

processors belonging to primary processor Pg are numbered ki + g, for all k = 1 ... , aY. Once

again, each secondary processor Pkn+g must compute k in order to assign itself to an item

indexed by k in the computation. These secondary processors activated by FW -FORK

cannot determine k as easily as the processors activated by FORK, especially in a PRAM[*I

without division. The next lemma describes a method by which the processors quickly

determine k.

t
141

Ordering Lemma. Let t and g be fixed positive integers, 0 < g _< ic-1, and let (T be another

I integer. Let r denote the set of processors {P,, I m = kit + g, 1 5 k < a). Each processor

P,,, in F can determine k in 0 (log a) time.

Proof. Assume it, (, and g are known. In time 0 (log a), one processor builds Table 1 in

Imem 1 such that location h contains the value 2 h, 0 5 h f log a] . Also in time 0 (log a),

another processor builds T?H e 2 in mem 2 such that location h contains the value i 2h,

0 < h 5 [log al . In the following, the values 2 h and ,r2h are read from Table 1 and Table 2,

respectively. Each processor Pm, m = kit + g, determines k as follows.

1. cx := 1, {3 1. (ax, 03 are indices into the tables.)

2. Compare t2a with m. If t2a > m, then k:= 1.

3. cL:= a+l.

4. Compare 7t2a with m. If ir2a < m, then go to Step 3. If t2' > m, then

CW/2 5 k < cc. (P. will determine the value of k within this range by binary

search.)

5. lower:= c2a - , upper:= t2, and k.bound:= 2' - '.

6. 13 :=)+ 1.

7. middle:= lower + i2a 0 , k.bound:= k.bound + 2a - 0

I 8. If middle < m - g, them lower := middle; go to Step 6.

If middle = m - g, then k := k.bound. Done.

IIf middle > m - g, then upper := middle and k.bound := k.bound - 2 - 0 ; go to

Step 6.

Pn performs each step hi the above algorithm in constant time. A processor may iterate

Stcps 6-8 or Steps 3 and 4 up to 0 (log a) times. The processors build Tables I and 2 in

!
I

142

0 (log c) time. Thus, each processor in I can determine k in 0 (log a) time. Note that the

algorithm uses only addition and subtraction. 0

Observe that 0 (log a) is the same as the time required to activate a processors, so the

Ordering Lemma implies no more than a constant factor increase in time in a simulation if

FW -FORK replaces FORK.

143

Chapter 11. Summary and Open Problems

11.1. Summary

In this thesis, we compared the computational power of time bounded Parallel Random

Access Machines (PRAMs) with different instruction sets. We proved that polynomial time

on PRAM[*]s or on PRAM[*, Is or on PRAM[T,I]s is equivalent to polynomial space on a

Turing machine (PSPACE). In particular, we showed the following bounds. Let each

simulated machine run for T(n) steps on inputs of length n; let T denote T(n) in the table

below. The simulating machines are basic PRAM, Turing machine, RAM with the same

instruction set, basic EREW PRAM, and uniform family of bounded fan-in circuits. The

bounds for the simulating machine are expressed in time, space, or depth, as shown in

parentheses by the machine type. The notation EREW means that the simulating machine is

an EREW PRAM, and the simulated machine is an EREW PRAM[op].

Table 11.1. Summary of results

Simulating Simulated machine

machine PRAM[*] PRAM[*,+] PRAM[-+i] PRAM[IT,]
PRAM (time) T 2 /log T T 2 T log(n+T) T 2

TM (space) T 2 T 2 log T T 2 T 3

RAM[op] (time) T2 T 3 .iT 3

EREW (time) T 2 T2 log T T T3

circuit (depth) T 2 T 2 log T T 2 T3

As noted in Section 9.6, the simulation of a PRAM[+] by a RAM[+] is highly

inefficient.

Further, we proved that PRAM [*, T, 1-PTIME is contained between NEXPTIME and

EXPSPACE. This is notable because polynomial time on a PRAM with either multiplication

I
I

144

or shifts alone is equivalent to PSPACE. Recall the Parallel Computation Thesis:

polynomial time on a reasonable model of parallel computation is equivalent to polynomial

space on a sequential model of computation. Our result of PRAM[*,T,,ls does not

contradict the Parallel Computation Thesis because the numbers generated by multiplication

and shift together are too long and complex to be "reasonable."

We also presented simulations of probabilistic PRAMs by deterministic PRAMs, using

parallelism to replace randomness.

11.2. Open Problems

1, As noted in Chapter 1, if we could reduce the number of processors used by the

simulation of a PRAM[*] or PRAM[*,+] or PRAM[T4] by a PRAM from an exponential

number to a polynomial number, then NC would be the languages accepted by PRAM(*]s,

PRAM[*,+Is, or PRAM[T,,1s, respectively, in polylog time with a polynomial number of

processors. Can the number of processors used by the PRAM in simulating the PRAM[*] be

reduced to a polynomial in P (n)T(n)?

2. We showed NEXPTIME C PRAM [*, T]-PTIME c EXPSPACE (Corollaries 7, 11

and 7.2.1). Does PRAM [*, T]-PTIME = EXPSPACE?

3. What is the relationship between RAM[*,T]s and PRAM[*,TI]s? Is NEXPTIME

RAM[*, TI-PTIME?

4. Can a log-space uniform, fan-in 2 0 (log n) depth circuit perform division? Beame

et al. (1986) developed a poly-time uniform division circuit. We could improve Theorems

5.1, 5.2, and 5.3 with a log-space uniform, 0 (log n) depth division circuit.

145

5. Can the log T(n) factor in PRAM [*,+I-TIME (T (n)) Q DSPACE (T 2(n) log T (n))

(Theorem 5.2) be removed by some other method?

6. What are the corresponding lower bounds on any of these simulations? Are any of

the bounds optimal?

7. As one of the first results of computational complexity theory, the linear speed-up

theorem for Turing machines (Hartmanis and Stearns, 1965) states that for every multitape

Turing machine of time complexity T(n) 3- n and every constant c > 0, there is a multtape

Turing machine that accepts the same language in time cT (n). The linear speed-up property

of Turing machines justifies the widespread use of order-of-magnitude analyses of

algorithms. Do PRAMs also enjoy the linear speed-up property?

146

Appendix A: Procedure BOOL

These appendices are written in guarded command style in order to more clearly show
parallel cases. The general form of a conditional command is

ifB, - S1
[]B 2 -- S 2

[]B,. S.

fi
where Bi is a Boolean expression and Si is a command or sequence of commands. For the
deterministic case, exactly one guard Bi is true. Similarly, the form of a DO loop is

doB - S
od

The loop is repeated until guard B is false. skip does nothing.

% The procedure BOOL (j, k, i, ,) takes as input Bi(g), containing the list of
% subtrees formed by merging the first levels of E(rcong(j)) and E(rcong(k)).
% BOOL returns the list with each subtree labeled as interesting or boring.
% For each node c, where ot is the root of a subtree in the list, assume proc (a) is
% a secondary processor belonging to primary processor Po,
% which corresponds to processor Pg of S'.
% For each (x, proc (a) executes the steps specified below.
% The variables jint, k_int, nextj_int, nextkint, right (a), and num (a) are
% global variables.
% jint tells if rcong(j) is in an interval of O's or I's at the position specified by val (ct).
% k int is defined similarly.

if righ (a) = 0--
% That is, if we want to know whether the least significant bit of rcong(i) is 0 or 1.

ifj int = I or k_int = I -+ result := t
[I jint = 0 and kint = 0 --+ result := 0
fi

[]right (cc)0 --
% Otherwise, we want to know whether vat (a) is the position of an interesting bit
% of rcong(i).

if vat (cx) = vat (node (num (cc)+l)) - result := boring
% result = boring means that vat (a) is not the location of an interesting bit in rcong(i);
% result = interesting means that vat (cx) is the location of an interesting bit in rcong (t).
% proc (ot) tests whether or not vat (c) = vat (node (num (a)+l)) by calling COMPARE

[] val (x) # vat (node (num (a)+ 1)) --
% nextj_int is j int at val (node (num (a)+1)); nextk_int is defined similarly.

if j_int = I or k_int =I -
if nextj_int = 1 or nextk int = 1 -4 result := boring
[] nextjint = 0 and nextkint = 0 --* result:= interesting
fi

(I j_int = 0 and kint0 -

147

if next] mnt = I or nextk -it = 1 -4 result interesting
[] nextj mnt =0 and nextkk mt =0 --+ result: boring
fi

fi

148

Appendix B: Procedure ADD (PRAM)

% The procedure ADD (j, W1, k, AV2, i, WY3) takes as input Bi(g), containing
% the list of subtrees formed by merging the first levels of E(rcon8 (j))
% and E(rcong(k)).
% ADD returns the list with each subtree labeled as interesting or boring,
% and the value of each interesting subtree specifies the location of an
% interesting bit in rcong(i) = rcong(j) + rcong(k).
% For each node a, where a is the root of a subtree in the list, assume proc (a) is
% a secondary processor belonging to primary processor Pm,
% which corresponds to processor Pg of S'.
% For each a, proc (a) executes the steps specified below.
% The variables iint, _int, kint, nextj_int, nexkint, carryout, pair-length,
% right (Ct), and num (cc) are global variables.
% jlint tells if rcong(j) is in an interval of 0's or l's at the position specified
% by val (a); k int and i int are defined similarly.
% pairlength tells if the interval-pair length of the interval-pair ending at
% position val (a) is one or more.
% carryin tells whether there is a carry into at inzerval-pair.

if right (ax)= 0 --+

% That is, if we want to know whether the least significant bit of rcong(i) is 0 or 1.
if j_int =k_int --+ result:= 0
[] jint kint -o result:= 1
fi

[] right (a)*0 -

% Otherwise, we want to know whether val (a) is the position of an interesting bit
% of rcong(i).

if val(a) = val (node (num (a)+l)) - result:= boring
% result = boring means that val (a) is not the location of an interesting bit in rcong (i);
% result = interesting means that val(a) is the location of an interesting bit in rcong(i).

[] val (a) * val (node (num (a)+l)) --
% nextj_int is jint at val (node (num (a)+1)); nextkint is defined similarly.

if (nextj int = nextkint = carryout # i_int)
or ((nextjint * nextkint) A (iint = carryout))

if pair length = 1 -- result := boring
[pair-length = more -+

E(rcong(i).N3. (right (a)+l)
:= ADD (i, xV3 .(right (a)+ 1), # 1, X, i, W3. (right (a)+ 1))

result := interesting
fi

% right (a)+ 1 specifies which element of the merged list a is, counting from the right.

[] nextjint = nextk int = i int * carryout -+
if pair-length I -- result := interesting

I
149!

[1 pair-length = more
result := interestingE(rcong (i).j3. .(right (at)+ 1112)

:= ADD (i, I3.(right(a)+1), # 1, X, i, V3.(right(a)+1))

result:= interesting
% In this case, an interesting bit occurs in the sum at val (c) and val (at)+ 1.
% We say that we insert the second interesting bit into the merged list at
% location right(a)+'/2.
% In fact, the merging algorithm leaves an empty slot between each pair of
% consecutive elements so that such interesting bits may be inserted.

[]((nextj-int * nextk_int) A (i_int carryout))
or (nextj]int = nextk int = iint = carryout) -- skip

fi
fi

fi

i
I

I
1
I

150

Appendix C: Procedure COMPARE

% Assume a has the form j, 3 has the form k.
% Assume rcon (j) and rcon (k) are positive.
% COMPARE recursively compares subtrees of I(rcon (j)).W1 and I(rcon (k)).V 2
% from right to left.
% Let I(a') = I(rcon(j)); I(5') = I(rcon (k)).
% Return "greater" if val(I(a').yl) > val(I(p').f 2),
% "equal" if val(I(a').V1) = val(I(P').W2), or
% "less" if val(I(a').4fj) < val(I(3').y 2) at time t.

S := SYMBOL (t, 4i, t);
Sf3 := SYMBOL (3, W2, t);

if Set = subtree and Sf # subtree - result:= greater
[]Sct subtree and S3 = subtree - result:= less
[St= 1 andS 3 =0 * result := greater
[]S= 0 and SP = 1 - result := less
[]ISc=OandSf3=o result := equal
[]Sct= I andS03= 1 - result := equal
[] Sct = subtree and Sf3 = subtree -4

A :=SYMBOL(ot W.1, t);
B :=SYMBOL (5, W2 1. t);

% A tells whether we are currently looking at a run of 0's or l's in rcon (j);
% similarly for B. Their initial values tell if rcon (j) and rcon (k) start in a
% runof0'sor l's

if A > B - result "=greater
[] A = B -4 result := equal
[]A< B - result:= less
fi;
aV := 2; b := 2;

% ay and bxV are pointers into their respective encodings
do neither aW nor bxV reaches beyond encoding -

X:= COMPARE (a, Wyt.aW, 03, W2 .bW, t);

% If A B, then we do not update result.
% If A B, then we update result to indicate which is greater.
% In both cases, we advance the pointers and update A and B as needed.

ifX =greater - bW:=bW+ 1; B :=-B
[X =equal - aWt:= aW+l1; byr:= bW+ 1; A:= A; B:= B

[IX=less - aW:=ay+ 1; A:= A
fi;
if A = 0 and B = - result := less
[IA = 1 and B = 0 - result := greater

od

151I
% at this point, either ay or bf points past its encoding

if only aW points past encoding -* result:= less
% that is, Ircon (j)l < Ircon (k)1, so rcon (j) < rcon (k)

[I only bW points past encoding -+ result := greater

I % if both point past encodings, then we must test which is greater
[I both aWg and by point past their encodings -

* X := COMPARE (oa.xt, aMt-1, 3.42, by-l, t);
if X = greater or X = less -4 result := X
[] X = equal -+ skip
fi

% otherwise, result stays the same
fi

fi
Recall that ct and P3 can have five different forms. These are: j, j.4, #d, I+j. , and

1 +j. 0. The above algorithm considers only the first form. For a of the form j. 0, call

COMPARE (j, O.xV,, k, W2, t). For a of the form #d, call CONVERT(#d) to convert the

constant d to the interesting bit encoding. For a of the form l+j. 0, call

COMPARE (ADD (j.4, # 1, W1, t), X, k, W2, t). For a of the form l+j.O, handle a the same

as in the previous case, except interpret O's as I's and l's as O's.

I

I

!

I
I

152

Appendix D: Procedure SYMBOL, Boolean Case

% Assume y has the form i.
% Suppose we have found that processor Pm executed instruction instr at time t-1
% that wrote r(i). instr was r(i)+--r (j) V r(k).
% If y.W points to a leaf in I(7) at time t, then return the symbol (0 or 1),
% otherwise, return an indication that y.y points to a subtree.

if W=X -->
% X represents the empty pointer

j-run := SYMBOL(j, X, t-1);
k run :=SYMBOL(k, X, t-l);
if -_run = subtree or k run = subtree -4 result := subtree
[Ijrun = 1 or k run = 1 - result:= 1
[]run = 0 and k_run = 0 -- result:= 0
fi

j_run := SYMBOL(j, 1, t-1);
k run :=SYMBOL(k, 1, t-l);

% ijrun tells if we are currently looking at a run of 0's or l's in rcon (j),
% similarly for k-run

if W= I -+
% that is, if we want to know whether the least significant bit of y is 0 or 1

if jrun = 1 or krun = 1 -- result:= 1
[]j run = 0 and k run = 0 -- result:= 0
fi

% else we want to know the location of some interesting bit of y
jx:= 2; kV:= 2; y/:= 2;

% jV, kW, and yqi are pointers to show where we are currently
% looking in the respective encodings

result := X;
do result = -+

oldj_run :=j_run;
oldkrun k_run;
runstop := COMPARE (j, jxV, k, kW, t-1);

% runstop indicates which run of identical bits stops first
if runstop = less -4 string := j

% string tells the string, j, k, or both, whose run of bits stops first
[]runstop = equal - string := both
[] runstop = greater -- string := k
fi;

if string = j -4 j-run := - j_run; ji := ji + 1

[I string = both --

jrun:=-nj_run; krun :=-,k run;
jxVl:=jxl+l; kxV :=kii+I

[]string =k -- k run :=- krun; kW := kW + 1

£
153

m fi;

if oldj run 0 and oldk run =0 -4
if FIRST(x) ="W -4

if string = both or string =j --
result := SYMBOL (j.Jw, REST(W), t-1)

[1 string = k --* result := SYMBOL(k.kxV, REST(y), t-1)
fi

[FIRST (x) yW -- yW :W +

fi
[]oldjrun = I or oldkrun=1

if j_run = 0 and k_run =0 -

% then an interesting bit occurs at the end of the l's
if FIRST (iV) = yW --

if string = both or string = j
-4 result := SYMBOL (j. (jxV- 1), REST (y), t- 1)
[] string= k -+

result := SYMBOL (k. (kwV-1), REST (W), t-1)
fi

[]FIRST (W) = W : +
fi

j] run= 1 or k_run = --+ skip
fi

fi

od
fi

fi

I

154

Appendix E: Procedure ADD (TM)

% Assume cc has the form j, 03 has the form k.
% y-a+ 3, soy<---r(j)+r(k)
% Return result:=

if W=X -->

j-run SYMBOL (j, X, t-l);
k run :=SYMBOL(k, X, t-1);

% j_run tells whether we are looking at a run of O's or 1 's
% in rcon (j); similarly for k run and yrun

if jrun = I and krun = 1 -4 result:= subtree
[] irun = 0 or k run = 0 - result:= j run ",'k-run
fi

)_run :=SYMBOL (j, 1, t-i);
k run :=SYMBOL(k, 1, t-l);
if -_run =k_run -+ result := 0
[Jjrun k-run -- result:= 1
fi

[j XandV* 1 -4
jrun := SYMBOL(j, 1, t-l);
k run := SYMBOL (k, 1, t-l);
if j_run =k_run -- yrun :=0
[] j_run k_run -- yrun 1

carryin =0; jW:=2; kV:=2; Yqf:=2;
% car.rin tls -hether there is a carry into a run-pair,
11 jW, kyi, yq are pointers into their respective encodings

finished:= false;
% finished is used as a flag for exiting the do statement

do -, finished -,

rightpointer := COMPARE (j, jxVl, k, kW, t-l);
% tells which pointer is to the right, that is, end of current run-pair

old-left :=COMPARE (j, (jW-1), k, (kt-1), t-);
% oldleft indicates end of previous run-pair

if (rightpointer = less or rightpointer = equal)
and (old left = less or old left = equal)

% right_pointer = less or equal means vat (j.jWl) < val (k.kW)
if COMPARE (j, jW,, l+k. (k'-1), t-l) = equal - pair length :=

% pair_length tells if the run-pair is of length one or more
[]COMPARE (j, jW, I+k. (k'V-l1), t-1) * equal -- pairlength more
Ii

[](rightpointer = less or right pointer = equal) and old left = greater
if COMPARE (j, jW, 1+j. (jNt-1), t-1)= equal -4 pair length
[I COMPARE(J, jtW, 1+j. (jW-1), t-l) equal -4 pairlength := more
fi

$
155

[]right_pointer = greater and (old left = less or oldleft = equal)
if COMPARE (k, kW, 1+k. (kv-1), t-l) = equal -4 pair length :=I
[] COMPARE (k, kxV1, 1+k. (kix,-l), t-i) # equal -* pair-length more
fi

[]right_pointer = greater and old left = greater
if COMPARE (k, kxV, l+j. (jW-1), t-l) = equal -- pair length =1
[] COMPARE (k, kxV, 1+j. (jiv-l), t-l) equal -- pairlength := more

fi;

if W =FIRST(V) --
% then this is the desired subtree

if = V - 4 :=x
% then this is the desired answer

[] "y q *:= REST (IV)
% is a pointer

fi;
finished:= true;

[]W FIRST(W) - skip
fi

if (j-run = k run = carryin * yrun)
or ((j run * k_run) A (y run = carryin)) --

if yyt = FIRST (4f) -'>

old-left := COMPARE (j, (jW-1), k, (k-1), t-l);
if oldleft = greater or oldleft = both

result := SYMBOLU(, W--1, t-1)

] oldleft = less --- result:= SYMBOL(k, (kV-1).4, t-l)
fi

[] FIRST (W) -' y :=i + 1; yrun := y run
fi

[]j run = krun * y-run = carryin --
if pair-length = 1 -+

carryin -" carryin;
if y_run = 1 -- finished:= false

% set finished to false in case it was earlier set true, no interesting bit occurs
% in this case

[] y-run = 0 -+ skip

fi
[] pair length = more --I if -W = FIRST (xV)

old left := COMPARE (j, (j-1), k, (kW-1), t-1);
if old left = greater or old-left = both

-- result := ADD (j. (jxV-1), # 1, , t-1)
[old left = less -- result := ADD (k. (kij-1), # 1. , t-1)

fiI

156

[] #y FIRST (,) -' yi:= yW + 1; carryin := carryin;
'_run := -'(Yrun

fi
fi

[]jrun = krun = yrun # carryin --
if pair-length = 1 -+

if W = FIRST (V)
old left := COMPARE (j, (jM'-l), k, (kw-1), t-1);
if oldleft = greater or old_left = both

-) result := SYMBOL Q, (jV-)., t-1)
[3 oldleft = less --+ result := SYMBOL(k, (kW-1)., t-1)
fi _

[I yW * FIRST(W) --1 yi := y + 1; carryin:= -, carryin;
y_run -= '_run

fi
[] pair length = more --

if y =FIRST(x) --

old-left := COMPARE(j, (j-1), k, (ky-1), t-1);
if oldleft = greater or oldleft = both
-)result := SYMBOL (, (jiW-1). , t-1)

[) oldleft = less -- result := SYMBOL (k, (kw-1). , t-1)
fi

[]y *FIRST() -'

% pick up the isolated interesting bit
yw := YW + 1;
if yW = FIRST (W)-'

ify~= Yq IV - =
[1 yt W --- :REST (W)
fi;

,finshed:= true,
% to get out of do loop

old .left := COMPARE (j, (jW-1), k, (kxV-1), t-1);
if old left = greater or old left = both
--, result :=ADD (j. (jV-I1), # 1, t, t -1)

Hold left= less -4 result := ADD (k. (k xV-1), # 1, ,, t-1)
fi

[] # FIRST(W) --+ y =yW + 1; carryin :=-carryin
fi

fi

((irun # k run) A (y_run # carryin))
or (jrun = krun = y run = carryin) --, skip

fi;

% now shift JW and kWj as necessary to point to the next interesting bit in

I
157

% their respective encodings
if rightpointer = less -4 jy := jxV + 1; j_run :- j_run

% that is, if the run of identical bits in rcon (j) stops before the
% run of identical bits in rcon (k)

[] right -pointer= equal --
jW :=j+ 1; kW:=kV + 1;
j_run := - j_run; krun := --, krun

[] right_pointer = greater -- k:-- ky + 1; krun :, k_run
fi;

% now handle the instance when at least one of jg, k\V points beyond its encoding
if--, finished -+

if ji and k\V point beyond their encodings --
% if both point beyond their encodings, we must check if a carry out
% from the last run-pair causes one more interesting bit to occur in I(y)

if carryin = 0 --
result:= beyond; finished := true

% beyond means that I(y) has fewer than FIRST (t)- I interesting bits
[] carryin = 1 -*

% carryin = 1 and rcon (y) has a 1, which is an interesting bit,
% in the location beyond the interesting bits of rcon (j) and rcon (k)

if Wt * FIRST(w) -4 result := beyond; finished:= true
[] Wg =FIRST (xt) -4

% this is the bit we are looking for
old left := COMPARE (j, (j4g-1), k, (k\V-l), i-1);
if old left = greater or old-left = both
- result := ADD (j.. (jV-l1), # 1, 4, t -1)

[] old-left = less -- result := ADD (k. (kxV-1), # 1, , t-l)
fi

fi
fi

[]kxV does not point beyond its encoding --
result := SYMBOL (k, FIRST (\V) - yqi + k W - 2).REST (), t-);

% FIRST (41) - W - 1 gives the remaining interesting bits to pass
% over in 1(y); k (W)- I gives the interesting bits in
% I(rcon (k)) already accounted for

finished:= true

[] jW does not point beyond its encoding --
result := SYMBOL (j, FIRST(Wt) - yq + jW - 1).REST (xV), t-l);
finished:= true

fi
[I finished -- skip

oda

__---"--- - -.-.- .-- -

158

References

H. Alt, T. Hagerup, K. Mehlhom, and F. P. Preparata (1987), "Deterministic Simulation of
Idealized Parallel Computers on More Realistic Ones," SIAM J. Comput., vol 16,
no. 5, pp. 808-835.

P. B. Beame, S, A. Cook, and H. J. Hoover (1986), "Log Depth Circuits for Division and
Related Problems," SIAM J. Comput., vol. 15, no. 4, pp. 994-1003.

A. Borodin (1977), "On Relating Time and Space to Size and Depth," SIAM J. Comput.,
vol. 6, pp. 733-744.

A. Borodin and J. E. Hopcroft (1985), "Routing, Merging, and Sorting on Parallel Models of
Computation," J. Comput. Syst. Sci., vol. 30, pp. 130-145.

A. K. Chandra, S. Fortune, and R. Lipton (1985), "Unbounded Fan-in Circuits and
Associative Functions," J Comput. Syst. Sci., vol. 30, pp. 222-234.

A. K. Chandra and L. J. Stockmeyer (1976), "Alternation," Proc. 17th IEEE Symp.
Foundations Comput, Sci, pp. 98-108.

A. K. Chandra, L. J. Stockmeyer, and U. Vishkin (1984), "Constant Depth Reducibility,"
SIAMJ. Comput., vol. 13, no. 2, pp. 423-439.

S, C. Chen (1983) "Large-Scale and High-Speed Multiprocessor System for Scientific
Application--Cray X-MP Series," Proc. NATO Adv. Res. High Speed Comput., pp.
117-126.

R. Cole (1986), "Parallel Merge Sort," Proc. 27th IEEE Symp. Foundations Comput. Sci.,
pp. 511-516,

S A Cook (1980), "Towards a Complexity Theory of Synchronous Parallel Computation,"
Technical Report 141/80, Dept. of Computer Science, University of Toronto.

S A. Cook (1985), "A Taxonomy of Problems with Fast Parallel Algorithms," Inf. Control,
vol. 64, pp. 2-22.

S. Cook, C. Dwork, and R. Reischuk (1986), "Upper and Lower Time Bounds for Parallel
Random Access Machines Without Simultaneous Writes," SIAM J. Comput., vol.
15, no. 1, pp. 87-97.

S A Cook and R. A. Reckhow (1973), "Time Bounded Random Access Machines," J.
Comput. Syst. Sci., vol. 7, pp. 354-375.

P W. Dymond and S. A. Cook (1980), "Hardware Complexity and Parallel Complexity,'
Proc. 21st IEEE Symp. Foundations Comput. Sci., pp. 360-372,

P W. Dymond and M. Tompa (1985), "Speedups of Deterministic Machines by
Synchronous Parallel Machines," J. Comput. Syst Sci., vol. 30, pp. 149-161.

D. M. Eckstein (1979), "Simultaneous Memory Accesses," Technical Report TR-79-6,
Computer Science Dept., Iowa State University.

159

F. E. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson (1985), "One, Two, Three
... Infinity: Lower Bounds for Parallel Computation," Proc. 17th ACM Symp.
Theory Comput., pp. 48-58.

F. E. Fich, F. Meyer auf der Heide, and A. Wigderson (1987), "Lower Bounds for Parallel
Random-Access Machines with Unbounded Shared Memory," Advances in
Computing Research, ed. F. P. Preparata, vol. 4, JAI Press, pp. 1-15.

F. E. Fich, P. Ragde, and A. Wigderson (1988a), "Simulations Among Concurrent-Write
PRAMs," Algorithmica, vol. 3, pp. 43-5 1.

F. E. Fich, P. Ragde, and A. Wigderson (1988b), "Relations Between Concurrent-Write
Models of Parallel Computation," SIAMJ. Comput., vol. 17, no. 3, pp. 606-627.

S. Fortune and J. Wyllie (1978), "Parallelism in Random Access Machines," Proc. 10th
ACM Symp. Theory Comput., pp. 114-118.

J. Gill (1977), "Computational Complexity of Probabilistic Turing Machines," SIAM J.
Comput., vol. 6, no. 4, pp. 675-695.

L. M. Goldschlager (1978), "A Unified Approach to Models of Synchronous Parallel
Machines," Proc. 10th ACM Symp. Theory Comput., pp. 89-94.

L. M. Goldschlager (1982), "A Universal Interconnection Pattern for Parallel Computers,"
J. ACM, vol. 29, no. 3, pp. 1073-1086.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir (1983),
"The NYU Ultracomputer---Designing an MIMD Shared Memory Parallel
Computer," IEEE Trans. Comput., vol. C-32, no. 2, pp. 175-189.

V. Grolmusz and P. Ragde (1987), "Incomparability in Parallel Computation," Proc. 28th
IEEE Symp. Foundations Comput. Sci., pp. 89-98.

J. Hartmanis (1971), "Computational Complexity of Random Access Stored Program
Machines," Math. Syst. Theory, vol. 5, no. 3, pp. 232-245.

J. Hartmanis and J. Simon (1974), "On the Power of Multiplication in Random Access
Machines," Proc. 15th Symp. Switching Automata Theory, pp. 13-23.

J. Hartmanis and R. E. Stearns (1965), "On the Computational Complexity of Algorithms,"

Trans. Amer. Math. Soc., vol. 117, pp. 285-306.

J. W. Hong (1986), Computation.: Computability, Similarity and Duality, Wiley, New York.

J. E. Hopcroft, W. J. Paul, and L. G. Valiant (1975), "On Time Versus Space and Related
Problems," Proc. 16th IEEE Symp. Foundations Comput. Sci., pp. 57-64.

K. Hwang (1979), Computer Arithmetic: Principles, Architecture, and Design, Wiley, New
York.

R. M. Karp and V. Ramachandran (1988), "A Survey of Parallel Algorithms for Shared-
Memory Machines," Univ. of California at Berkeley Tech. Report No. UCB/CSD
88/408.

!

160

J. Katajainen, J. van Leeuwen, and M. Penttonen (1988), "Fast Simulation of Turing
Machines by Random Access Machines," SIAM J. Comput., vol. 17, no. 1, pp. 77-
88.

L. Kucera (1982), "Parallel Computation and Conflicts in Memory Access," Inf. Process.
Let., vol. 14, pp. 93-96,

D. J. Kuck (1986), "Parallel Computing Today and Cedar Approach," Science, pp. 967-974.

R. E. Ladner and M. J. Fischer (1980), "Parallel Prefix Computation," J. ACM, vol. 27, pp.
831-838.

K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro (1956), "Computability by
Probabilistic Machines," Automata Studies, Annals of Mathematical Studies 34,
Princeton University Press, Princeton, NJ, pp. 183-212.

M. Li and Y. Yesha (1986), "New Lower Bounds for Parallel Computation," Proc. 18th
ACM Symp. Theory Comput., pp. 177-187.

M Luby (1986), "A Simple Parallel Algorithm for the Maximal Independent Set Problem,"
SIAMJ. Comput., vol. 15, no. 4, pp, 1036-1053.

G. L. Miller and J. H. Reif (1985), "Parallel Tree Contraction and Its Application," Proc.
26th IEEE Symp. Foundations Comput. Sci., pp. 478-489.

W. Morris, ed. (1980), The American Heritage Dictionary of the English Language,
Houghton Mifflin, Boston,

I. Parberry (1986), "Parallel Speedup of Sequential Machines: A Defense of the Parallel

Computation Thesis," SIGACT News, vol. 18, no. 1, pp. 54-67.

1. Parberry (1987), Parallel Complexity Theory, Wiley, New York.

I. Parberry and P. Y. Yuan (1987), "Improved Upper and Lower Time Bounds for Parallel
Random Access Machines without Simultaneous Writes," Technical Report CS-
87-29, Dept. of Computer Science, Pennsylvania State University.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss (1985), "The IBM Research
Parallel Processor Prototype (RP3): Introduction and Architecture," Proc. Int. Conf.
Par Process., pp. 764-771.

V. Pratt and L. Stockmeyer (1976), "A Characterization of the Power of Vector Machines,"
J. Comput. Syst. Sci., vol. 12, pp. 198-221.

F. P. Preparata and J. Vuillemin (1981), "The Cube-Connected Cycles: A Versatile Network
for Parallel Computation," Commun. ACM, vol. 24, no. 5, pp, 300-309.

M. 0. Rabin (1976), "Probabilistic Algorithms," Algorithms and Complexity, edited by J.
Traub, Academic Press, New York.

S. Rajasekaran and J. H. Reif (1987), "Randomized Parallel Computation," Lect Notes
Comput. Sci. 270 (Computation Theory and Logic), pp. 364-376,

161

A. G. Ranade (1987), "How to Emulate Shared Memory," Proc. 28th IEEE Symp.
Foundations Comput. Sci., pp. 185-194.

J. H. Reif (1984), "On Synchronous Parallel Computations with Independent Probabilistic
Choice," SIAM J. Comput., vol. 13, no. 1, pp. 46-56.

J. H. Reif (1986), "Logarithmic Depth Circuits for Algebraic Functions," SIAM J. Comput.,
vol. 15, no. 1, pp. 231-242.

R. Reischuk (1987), "Simultaneous WRITES of Parallel Random Access Machines Do Not
Help to Compute Simple Arithmetic Functions," J. ACM, vol. 34, no. 1, pp. 163-
178.

J. M. Robson (1984), "Fast Probabilistic RAM Simulation of Single Tape Turing Machine
Computations," Inf. Control, vol. 63, pp. 67-87.

W. L. Ruzzo (191), -On Uniform Circuit Complexity," J. Comput. Syst. Sci., vol. 22, pp.
365-383.

W. Ruzzo (1985), "The Equivalence of Restricted Parallel Random Access Machines and
Hardware Modification Machines," preprint.

E. S. Santos (1969), "Probabilistic Turing Machines and Computability," Proc. Amer.
Math. Soc., vol. 22, pp. 704-710.

E. S. Santos (1971), "Computability by Probabilistic Turing Machines," Trans. Amer. Math.
Soc., vol. 159, pp. 165-184.

W. Savitch (1982), "Parallel Random Access Machines with Powerful Instruction Sets,"
Math. Syst. Theory, vol. 15, pp. 191-210.

W. Savitch and M. Stimson (1979), "Time Bounded Random Access Machines with Parallel
Processing," J. ACM, vol. 26, no. 1, pp. 103-118.

A. Sch6nhage (1979), "On the Power of Random Access Machines," Lect. Notes Comput.
Sci. 71, ("Automata, Languages, and Programming 6th Colloquium,"), pp. 520-
529.

A. Schonhage (1980), "Storage Modification Machines," SIAM J Comput., vol. 9, no. 3, pp,
490-508.

A Sch6nhage and V. Strassen (1971), "Schnelle Multiplikation grosser Zahlen,"
Computing, vol. 7, pp. 281-292.

J. T. Schwartz (1980), "Ultracomputers," ACM Trans. Program. Lang. Syst., vol. 2, no. 4,
pp. 484-521.

C. L. Seitz (1985), "The Cosmic Cube," Commun. ACM, vol. 28, no. 1, pp. 22-33.

N. Shankar and V. Ramachandran (1987), "Efficient Parallel Circuits and Nlgorithms for
Division," Technical Report UILU-ENG-87-2235 (ACT-78), Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign (to appear in Inf. Process
Len.).

i

162

J. Simon (1977), "On Feasible Numbers," Proc. 9th ACM Symp. Theory Comput., pp. 195-
207.

J. Simon (1981a), "Division in Idealized Unit Cost RAMs," J. Comput. Syst. Sci., vol. 22,
pp. 421-441.

J. Simon (1981b), "On Tape-Bounded Probabilistic Turing Machine Acceptors," Theor.
Comput. Sci., vol. 16, pp. 75-91.

C. Slot and P. van Emde Boas (1988), "The Problem of Space Invariance for Sequential
Machines," Info. and Comput., vol. 77, pp. 93-122.

M. Snir (1985), "On Parallel Searching," SIAM J. Comput., vol. 14, no. 3, pp. 688-708.

L. Stockmeyer (1976), "Arithmetic Versus Boolean Operations in Idealized Register
Machines," IBM Research Report RC 5954.

L. Stockmeyer and U. Vishkin (1984), "Simulation of Parallel Random Access Machines by
Circuits," SIAM J. Comput., vol. 13, no, 2, pp. 409-422.

C, D. Thompson and H. T. Kung (1977), "Sorting on a Mesh-Connected Parallel
Computer," Commun. ACM, vol. 20, no. 4, pp. 263-271.

J. L. Trahan, M. C. Loui, and V. Ramachandran (1988), "Multiplication, Division, and Shift
Instructions in Parallel Random Access Machines," Proc. 22nd Conf. Inf. Sci, Syst.,
pp. 126-130.

U. Vishkin (1983a), "Implementation of Simultaneous Memory Address Access in Models
That Forbid It," J. Algorithms, vol. 4, pp. 45-50.

U Vishkin (1983b), "Synchronous Parallel Computation: A Survey," TR-71, Dept. of
Computer Science, Courant Institute, NYU.

D J A, Welsh (1983), "Randomised Algorithms," Discrete Appi. Math., vol. 5, pp 133-
145.

1. Wiedermann (1983), "Deterministic and Nondeterministic Simulation of the RAM by the
Turing Machine," Information Processing 83, ed. R. E. A. Mason, Elsevier Science
Publishers B. V. (North-Holland), New York, pp. 163-168.

163

Vita

Jerry Trahan was born He received his B.S. in

Electrical Engineering from Louisiana State University in December 1983 and his M.S. in

Electrical Engineering from the University of Illinois in January 1996.

